IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v26y2019i1p1-37.html
   My bibliography  Save this article

Optimal Asset Allocation for Retirement Saving: Deterministic Vs. Time Consistent Adaptive Strategies

Author

Listed:
  • Peter A. Forsyth
  • Kenneth R. Vetzal

Abstract

We consider optimal asset allocation for an investor saving for retirement. The portfolio contains a bond index and a stock index. We use multi-period criteria and explore two types of strategies: deterministic strategies are based only on the time remaining until the anticipated retirement date, while adaptive strategies also consider the investor’s accumulated wealth. The vast majority of financial products designed for retirement saving use deterministic strategies (e.g., target date funds). In the deterministic case, we determine an optimal open loop control using mean-variance criteria. In the adaptive case, we use time consistent mean-variance and quadratic shortfall objectives. Tests based on both a synthetic market where the stock index is modelled by a jump-diffusion process and also on bootstrap resampling of long-term historical data show that the optimal adaptive strategies significantly outperform the optimal deterministic strategy. This suggests that investors are not being well served by the strategies currently dominating the marketplace.

Suggested Citation

  • Peter A. Forsyth & Kenneth R. Vetzal, 2019. "Optimal Asset Allocation for Retirement Saving: Deterministic Vs. Time Consistent Adaptive Strategies," Applied Mathematical Finance, Taylor & Francis Journals, vol. 26(1), pages 1-37, January.
  • Handle: RePEc:taf:apmtfi:v:26:y:2019:i:1:p:1-37
    DOI: 10.1080/1350486X.2019.1584534
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1350486X.2019.1584534
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1350486X.2019.1584534?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter A. Forsyth, 2020. "A Stochastic Control Approach to Defined Contribution Plan Decumulation: "The Nastiest, Hardest Problem in Finance"," Papers 2008.06598, arXiv.org.
    2. Li, Yuying & Forsyth, Peter A., 2019. "A data-driven neural network approach to optimal asset allocation for target based defined contribution pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 189-204.
    3. Peter A. Forsyth & Kenneth R. Vetzal, 2019. "Defined Contribution Pension Plans: Who Has Seen the Risk?," JRFM, MDPI, vol. 12(2), pages 1-27, April.
    4. Kamphol Panyagometh, 2021. "Dynamic Spending and Risk-Based Simulation in Retirement Planning," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 11(4), pages 337-346, April.
    5. Zhang, Hanwen & Dang, Duy-Minh, 2024. "A monotone numerical integration method for mean–variance portfolio optimization under jump-diffusion models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 112-140.
    6. Hanwen Zhang & Duy-Minh Dang, 2023. "A monotone numerical integration method for mean-variance portfolio optimization under jump-diffusion models," Papers 2309.05977, arXiv.org.
    7. Peter A. Forsyth & Kenneth R. Vetzal & G. Westmacott, 2022. "Optimal performance of a tontine overlay subject to withdrawal constraints," Papers 2211.10509, arXiv.org.
    8. Chendi Ni & Yuying Li & Peter Forsyth & Ray Carroll, 2020. "Optimal Asset Allocation For Outperforming A Stochastic Benchmark Target," Papers 2006.15384, arXiv.org.
    9. Peter A. Forsyth & Kenneth R. Vetzal & Graham Westmacott, 2021. "Optimal control of the decumulation of a retirement portfolio with variable spending and dynamic asset allocation," Papers 2101.02760, arXiv.org.
    10. Forsyth, Peter A., 2020. "Optimal dynamic asset allocation for DC plan accumulation/decumulation: Ambition-CVAR," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 230-245.
    11. Marc Chen & Mohammad Shirazi & Peter A. Forsyth & Yuying Li, 2023. "Machine Learning and Hamilton-Jacobi-Bellman Equation for Optimal Decumulation: a Comparison Study," Papers 2306.10582, arXiv.org.
    12. Forsyth, Peter A., 2022. "Short term decumulation strategies for underspending retirees," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 56-74.
    13. van Staden, Pieter M. & Forsyth, Peter A. & Li, Yuying, 2024. "Across-time risk-aware strategies for outperforming a benchmark," European Journal of Operational Research, Elsevier, vol. 313(2), pages 776-800.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:26:y:2019:i:1:p:1-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.