Author
Abstract
We investigate multi-period mean-risk portfolio optimization for long-horizon Defined Contribution plans, focusing on buffered Probability of Exceedance (bPoE), a more intuitive, dollar-based alternative to Conditional Value-at-Risk (CVaR). We formulate both pre-commitment and time-consistent Mean-bPoE and Mean-CVaR portfolio optimization problems under realistic investment constraints (e.g., no leverage, no short selling) and jump-diffusion dynamics. These formulations are naturally framed as bilevel optimization problems, with an outer search over the shortfall threshold and an inner optimization over rebalancing decisions. We establish an equivalence between the pre-commitment formulations through a one-to-one correspondence of their scalarization optimal sets, while showing that no such equivalence holds in the time-consistent setting. We develop provably convergent numerical schemes for the value functions associated with both pre-commitment and time-consistent formulations of these mean-risk control problems. Using nearly a century of market data, we find that time-consistent Mean-bPoE strategies closely resemble their pre-commitment counterparts. In particular, they maintain alignment with investors' preferences for a minimum acceptable terminal wealth level-unlike time-consistent Mean-CVaR, which often leads to counterintuitive control behavior. We further show that bPoE, as a strictly tail-oriented measure, prioritizes guarding against catastrophic shortfalls while allowing meaningful upside exposure, making it especially appealing for long-horizon wealth security. These findings highlight bPoE's practical advantages for Defined Contribution investment planning.
Suggested Citation
Duy-Minh Dang & Chang Chen, 2025.
"Multi-period Mean-Buffered Probability of Exceedance in Defined Contribution Portfolio Optimization,"
Papers
2505.22121, arXiv.org, revised Jun 2025.
Handle:
RePEc:arx:papers:2505.22121
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2505.22121. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.