IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.16364.html
   My bibliography  Save this paper

Risk Measures for DC Pension Plan Decumulation

Author

Listed:
  • Peter A. Forsyth
  • Yuying Li

Abstract

As the developed world replaces Defined Benefit (DB) pension plans with Defined Contribution (DC) plans, there is a need to develop decumulation strategies for DC plan holders. Optimal decumulation can be viewed as a problem in optimal stochastic control. Formulation as a control problem requires specification of an objective function, which in turn requires a definition of reward and risk. An intuitive specification of reward is the total withdrawals over the retirement period. Most retirees view risk as the possibility of running out of savings. This paper investigates several possible left tail risk measures, in conjunction with DC plan decumulation. The risk measures studied include (i) expected shortfall (ii) linear shortfall and (iii) probability of shortfall. We establish that, under certain assumptions, the set of optimal controls associated with all expected reward and expected shortfall Pareto efficient frontier curves is identical to the set of optimal controls for all expected reward and linear shortfall Pareto efficient frontier curves. Optimal efficient frontiers are determined computationally for each risk measure, based on a parametric market model. Robustness of these strategies is determined by testing the strategies out-of-sample using block bootstrapping of historical data.

Suggested Citation

  • Peter A. Forsyth & Yuying Li, 2025. "Risk Measures for DC Pension Plan Decumulation," Papers 2502.16364, arXiv.org.
  • Handle: RePEc:arx:papers:2502.16364
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.16364
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elena Vigna, 2014. "On efficiency of mean--variance based portfolio selection in defined contribution pension schemes," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 237-258, February.
    2. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    3. Dang, D.M. & Forsyth, P.A., 2016. "Better than pre-commitment mean-variance portfolio allocation strategies: A semi-self-financing Hamilton–Jacobi–Bellman equation approach," European Journal of Operational Research, Elsevier, vol. 250(3), pages 827-841.
    4. Strub, Moris S. & Li, Duan & Cui, Xiangyu & Gao, Jianjun, 2019. "Discrete-time mean-CVaR portfolio selection and time-consistency induced term structure of the CVaR," Journal of Economic Dynamics and Control, Elsevier, vol. 108(C).
    5. Peijnenburg, Kim & Nijman, Theo & Werker, Bas J.M., 2016. "The annuity puzzle remains a puzzle," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 18-35.
    6. Hubert Dichtl & Wolfgang Drobetz & Martin Wambach, 2016. "Testing rebalancing strategies for stock-bond portfolios across different asset allocations," Applied Economics, Taylor & Francis Journals, vol. 48(9), pages 772-788, February.
    7. Tomas Björk & Agatha Murgoci, 2014. "A theory of Markovian time-inconsistent stochastic control in discrete time," Finance and Stochastics, Springer, vol. 18(3), pages 545-592, July.
    8. Bonnie-Jeanne MacDonald & Bruce Jones & Richard Morrison & Robert Brown & Mary Hardy, 2013. "Research and Reality: A Literature Review on Drawing Down Retirement Financial Savings," North American Actuarial Journal, Taylor & Francis Journals, vol. 17(3), pages 181-215.
    9. Lin, Yijia & MacMinn, Richard D. & Tian, Ruilin, 2015. "De-risking defined benefit plans," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 52-65.
    10. Peter A. Forsyth & Kenneth R. Vetzal, 2019. "Optimal Asset Allocation for Retirement Saving: Deterministic Vs. Time Consistent Adaptive Strategies," Applied Mathematical Finance, Taylor & Francis Journals, vol. 26(1), pages 1-37, January.
    11. Forsyth, Peter A. & Vetzal, Kenneth R. & Westmacott, Graham, 2024. "Optimal performance of a tontine overlay subject to withdrawal constraints," ASTIN Bulletin, Cambridge University Press, vol. 54(1), pages 94-128, January.
    12. Philippe Cogneau & Valeri Zakamouline, 2013. "Block bootstrap methods and the choice of stocks for the long run," Quantitative Finance, Taylor & Francis Journals, vol. 13(9), pages 1443-1457, September.
    13. Chendi Ni & Yuying Li & Peter Forsyth & Ray Carroll, 2022. "Optimal asset allocation for outperforming a stochastic benchmark target," Quantitative Finance, Taylor & Francis Journals, vol. 22(9), pages 1595-1626, September.
    14. Peter A. Forsyth, 2022. "A Stochastic Control Approach to Defined Contribution Plan Decumulation: “The Nastiest, Hardest Problem in Finance”," North American Actuarial Journal, Taylor & Francis Journals, vol. 26(2), pages 227-251, April.
    15. Marc Chen & Mohammad Shirazi & Peter A. Forsyth & Yuying Li, 2023. "Machine Learning and Hamilton-Jacobi-Bellman Equation for Optimal Decumulation: a Comparison Study," Papers 2306.10582, arXiv.org.
    16. Dimitris Politis & Halbert White, 2004. "Automatic Block-Length Selection for the Dependent Bootstrap," Econometric Reviews, Taylor & Francis Journals, vol. 23(1), pages 53-70.
    17. Shefrin, Hersh M & Thaler, Richard H, 1988. "The Behavioral Life-Cycle Hypothesis," Economic Inquiry, Western Economic Association International, vol. 26(4), pages 609-643, October.
    18. Anarkulova, Aizhan & Cederburg, Scott & O’Doherty, Michael S., 2022. "Stocks for the long run? Evidence from a broad sample of developed markets," Journal of Financial Economics, Elsevier, vol. 143(1), pages 409-433.
    19. van Staden, Pieter M. & Dang, Duy-Minh & Forsyth, Peter A., 2021. "The surprising robustness of dynamic Mean-Variance portfolio optimization to model misspecification errors," European Journal of Operational Research, Elsevier, vol. 289(2), pages 774-792.
    20. Forsyth, Peter A., 2020. "Optimal dynamic asset allocation for DC plan accumulation/decumulation: Ambition-CVAR," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 230-245.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter A. Forsyth & Kenneth R. Vetzal & G. Westmacott, 2022. "Optimal performance of a tontine overlay subject to withdrawal constraints," Papers 2211.10509, arXiv.org.
    2. Marc Chen & Mohammad Shirazi & Peter A. Forsyth & Yuying Li, 2023. "Machine Learning and Hamilton-Jacobi-Bellman Equation for Optimal Decumulation: a Comparison Study," Papers 2306.10582, arXiv.org.
    3. Forsyth, Peter A., 2022. "Short term decumulation strategies for underspending retirees," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 56-74.
    4. Chendi Ni & Yuying Li & Peter A. Forsyth, 2023. "Neural Network Approach to Portfolio Optimization with Leverage Constraints:a Case Study on High Inflation Investment," Papers 2304.05297, arXiv.org, revised May 2023.
    5. Peter A. Forsyth, 2020. "A Stochastic Control Approach to Defined Contribution Plan Decumulation: "The Nastiest, Hardest Problem in Finance"," Papers 2008.06598, arXiv.org.
    6. Forsyth, Peter A., 2020. "Optimal dynamic asset allocation for DC plan accumulation/decumulation: Ambition-CVAR," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 230-245.
    7. Pieter M. van Staden & Peter A. Forsyth & Yuying Li, 2023. "A parsimonious neural network approach to solve portfolio optimization problems without using dynamic programming," Papers 2303.08968, arXiv.org.
    8. Peter A. Forsyth & Kenneth R. Vetzal & Graham Westmacott, 2021. "Optimal control of the decumulation of a retirement portfolio with variable spending and dynamic asset allocation," Papers 2101.02760, arXiv.org.
    9. Pieter van Staden & Peter Forsyth & Yuying Li, 2024. "Smart leverage? Rethinking the role of Leveraged Exchange Traded Funds in constructing portfolios to beat a benchmark," Papers 2412.05431, arXiv.org, revised Mar 2025.
    10. Zhang, Hanwen & Dang, Duy-Minh, 2024. "A monotone numerical integration method for mean–variance portfolio optimization under jump-diffusion models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 112-140.
    11. van Staden, Pieter M. & Forsyth, Peter A. & Li, Yuying, 2024. "Across-time risk-aware strategies for outperforming a benchmark," European Journal of Operational Research, Elsevier, vol. 313(2), pages 776-800.
    12. Li, Yuying & Forsyth, Peter A., 2019. "A data-driven neural network approach to optimal asset allocation for target based defined contribution pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 189-204.
    13. Peter A. Forsyth & Kenneth R. Vetzal, 2019. "Defined Contribution Pension Plans: Who Has Seen the Risk?," JRFM, MDPI, vol. 12(2), pages 1-27, April.
    14. Hanwen Zhang & Duy-Minh Dang, 2023. "A monotone numerical integration method for mean-variance portfolio optimization under jump-diffusion models," Papers 2309.05977, arXiv.org.
    15. van Staden, Pieter M. & Dang, Duy-Minh & Forsyth, Peter A., 2021. "The surprising robustness of dynamic Mean-Variance portfolio optimization to model misspecification errors," European Journal of Operational Research, Elsevier, vol. 289(2), pages 774-792.
    16. Chendi Ni & Yuying Li & Peter Forsyth & Ray Carroll, 2020. "Optimal Asset Allocation For Outperforming A Stochastic Benchmark Target," Papers 2006.15384, arXiv.org.
    17. Van Staden, Pieter M. & Dang, Duy-Minh & Forsyth, Peter A., 2018. "Time-consistent mean–variance portfolio optimization: A numerical impulse control approach," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 9-28.
    18. P. A. Forsyth & K. R. Vetzal, 2017. "Robust Asset Allocation For Long-Term Target-Based Investing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(03), pages 1-32, May.
    19. De Gennaro Aquino, Luca & Sornette, Didier & Strub, Moris S., 2023. "Portfolio selection with exploration of new investment assets," European Journal of Operational Research, Elsevier, vol. 310(2), pages 773-792.
    20. Peter A. Forsyth & Kenneth R. Vetzal, 2017. "Dynamic mean variance asset allocation: Tests for robustness," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(02n03), pages 1-37, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.16364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.