IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v63y2015icp52-65.html
   My bibliography  Save this article

De-risking defined benefit plans

Author

Listed:
  • Lin, Yijia
  • MacMinn, Richard D.
  • Tian, Ruilin

Abstract

To identify an appropriate pension de-risking method, this paper proposes an optimization model that minimizes the expected total pension cost subject to a conditional value at risk (CVaR) constraint on pension funding level. Using this model, we examine three pension hedging strategies, i.e., longevity hedge, buy-in and buy-out; each strategy is examined with hedging costs that include a risk premium, search and information cost, underfunding cost, and counter-party risk cost. The numerical examples demonstrate that these hedging costs have a significant impact on the hedging decision. The hedge ratio (total pension cost) decreases (increases) with the transaction cost, the counter-party default probability and the underfunding ratio. In addition, the buy-out underperforms the longevity hedge and the buy-in for underfunded plans and the longevity hedge is less sensitive to the default risk than the buy-in.

Suggested Citation

  • Lin, Yijia & MacMinn, Richard D. & Tian, Ruilin, 2015. "De-risking defined benefit plans," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 52-65.
  • Handle: RePEc:eee:insuma:v:63:y:2015:i:c:p:52-65
    DOI: 10.1016/j.insmatheco.2015.03.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668715000608
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2015.03.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dowd, Kevin & Cairns, Andrew J.G. & Blake, David, 2006. "Mortality-dependent financial risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 427-440, June.
    2. Haberman, Steven & Butt, Zoltan & Megaloudi, Chryssoula, 2000. "Contribution and solvency risk in a defined benefit pension scheme," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 237-259, October.
    3. Maurer, Raimond & Mitchell, Olivia S. & Rogalla, Ralph, 2009. "Managing contribution and capital market risk in a funded public defined benefit plan: Impact of CVaR cost constraints," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 25-34, August.
    4. Samuel H. Cox & Yijia Lin & Ruilin Tian & Luis F. Zuluaga, 2013. "Mortality Portfolio Risk Management," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(4), pages 853-890, December.
    5. Kouwenberg, Roy, 2001. "Scenario generation and stochastic programming models for asset liability management," European Journal of Operational Research, Elsevier, vol. 134(2), pages 279-292, October.
    6. Chang, S. C. & Tzeng, Larry Y. & Miao, Jerry C. Y., 2003. "Pension funding incorporating downside risks," Insurance: Mathematics and Economics, Elsevier, vol. 32(2), pages 217-228, April.
    7. Yijia Lin & Ken Tan & Ruilin Tian & Jifeng Yu, 2014. "Downside Risk Management of a Defined Benefit Plan Considering Longevity Basis Risk," North American Actuarial Journal, Taylor & Francis Journals, vol. 18(1), pages 68-86.
    8. Andreas Milidonis & Yijia Lin & Samuel Cox, 2011. "Mortality Regimes and Pricing," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(2), pages 266-289.
    9. Josa-Fombellida, Ricardo & Rincon-Zapatero, Juan Pablo, 2004. "Optimal risk management in defined benefit stochastic pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 34(3), pages 489-503, June.
    10. Lin, Yijia & Cox, Samuel H., 2008. "Securitization of catastrophe mortality risks," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 628-637, April.
    11. Ruilin Tian & Samuel Cox & Yijia Lin & Luis Zuluaga, 2010. "Portfolio Risk Management with CVaR-Like Constraints," North American Actuarial Journal, Taylor & Francis Journals, vol. 14(1), pages 86-106.
    12. Blake, D. & Cairns, A. J. G. & Dowd, K., 2006. "Living with Mortality: Longevity Bonds and Other Mortality-Linked Securities," British Actuarial Journal, Cambridge University Press, vol. 12(1), pages 153-197, March.
    13. Colombo, Luigi & Haberman, Steven, 2005. "Optimal contributions in a defined benefit pension scheme with stochastic new entrants," Insurance: Mathematics and Economics, Elsevier, vol. 37(2), pages 335-354, October.
    14. Cairns, Andrew J.G., 2011. "Modelling and management of longevity risk: Approximations to survivor functions and dynamic hedging," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 438-453.
    15. Samuel Cox & Yijia Lin, 2007. "Natural Hedging of Life and Annuity Mortality Risks," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(3), pages 1-15.
    16. Cox, Samuel H. & Lin, Yijia & Pedersen, Hal, 2010. "Mortality risk modeling: Applications to insurance securitization," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 242-253, February.
    17. Yijia Lin & Sheen Liu & Jifeng Yu, 2013. "Pricing Mortality Securities With Correlated Mortality Indexes," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(4), pages 921-948, December.
    18. Deborah J. Lucas & Stephen P. Zeldes, 2009. "How Should Public Pension Plans Invest?," American Economic Review, American Economic Association, vol. 99(2), pages 527-532, May.
    19. Delong, Lukasz & Gerrard, Russell & Haberman, Steven, 2008. "Mean-variance optimization problems for an accumulation phase in a defined benefit plan," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 107-118, February.
    20. Samuel H. Cox & Yijia Lin & Ruilin Tian & Jifeng Yu, 2013. "Managing Capital Market and Longevity Risks in a Defined Benefit Pension Plan," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 585-620, September.
    21. Yijia Lin & Samuel H. Cox, 2005. "Securitization of Mortality Risks in Life Annuities," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 72(2), pages 227-252, June.
    22. Johnny Li & Mary Hardy, 2011. "Measuring Basis Risk in Longevity Hedges," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(2), pages 177-200.
    23. Samuel H. Cox & Yijia Lin & Shaun Wang, 2006. "Multivariate Exponential Tilting and Pricing Implications for Mortality Securitization," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 719-736, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Broeders, Dirk & Mehlkopf, Roel & van Ool, Annick, 2021. "The economics of sharing macro-longevity risk," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 440-458.
    2. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    3. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    4. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    5. Chendi Ni & Yuying Li & Peter A. Forsyth, 2023. "Neural Network Approach to Portfolio Optimization with Leverage Constraints:a Case Study on High Inflation Investment," Papers 2304.05297, arXiv.org, revised May 2023.
    6. Peter A. Forsyth & Kenneth R. Vetzal & Graham Westmacott, 2021. "Optimal control of the decumulation of a retirement portfolio with variable spending and dynamic asset allocation," Papers 2101.02760, arXiv.org.
    7. Marc Chen & Mohammad Shirazi & Peter A. Forsyth & Yuying Li, 2023. "Machine Learning and Hamilton-Jacobi-Bellman Equation for Optimal Decumulation: a Comparison Study," Papers 2306.10582, arXiv.org.
    8. Mary McCarthy & Elisabeta Pana & Andrew Weinberger, 2021. "The role of institutional investors in pension risk transfers," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 45(3), pages 451-468, July.
    9. Forsyth, Peter A., 2022. "Short term decumulation strategies for underspending retirees," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 56-74.
    10. Li, Zezeng & Kara, Alper, 2022. "Pension de-risking choice and firm risk: Traditional versus innovative strategies," International Review of Financial Analysis, Elsevier, vol. 81(C).
    11. D’Amato, Valeria & Di Lorenzo, Emilia & Haberman, Steven & Sagoo, Pretty & Sibillo, Marilena, 2018. "De-risking strategy: Longevity spread buy-in," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 124-136.
    12. Peter A. Forsyth, 2020. "A Stochastic Control Approach to Defined Contribution Plan Decumulation: "The Nastiest, Hardest Problem in Finance"," Papers 2008.06598, arXiv.org.
    13. Fadoua Zeddouk & Pierre Devolder, 2019. "Pricing of Longevity Derivatives and Cost of Capital," Risks, MDPI, vol. 7(2), pages 1-29, April.
    14. An Chen & Motonobu Kanagawa & Fangyuan Zhang, 2021. "Intergenerational risk sharing in a Defined Contribution pension system: analysis with Bayesian optimization," Papers 2106.13644, arXiv.org, revised Mar 2023.
    15. Peter A. Forsyth & Kenneth R. Vetzal & G. Westmacott, 2022. "Optimal performance of a tontine overlay subject to withdrawal constraints," Papers 2211.10509, arXiv.org.
    16. Forsyth, Peter A., 2020. "Optimal dynamic asset allocation for DC plan accumulation/decumulation: Ambition-CVAR," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 230-245.
    17. Cox, Samuel H. & Lin, Yijia & Shi, Tianxiang, 2018. "Pension risk management with funding and buyout options," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 183-200.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel H. Cox & Yijia Lin & Ruilin Tian & Jifeng Yu, 2013. "Managing Capital Market and Longevity Risks in a Defined Benefit Pension Plan," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 585-620, September.
    2. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    3. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    4. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    5. Cox, Samuel H. & Lin, Yijia & Shi, Tianxiang, 2018. "Pension risk management with funding and buyout options," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 183-200.
    6. Bahl, Raj Kumari & Sabanis, Sotirios, 2021. "Model-independent price bounds for Catastrophic Mortality Bonds," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 276-291.
    7. Chen, Fen-Ying & Yang, Sharon S. & Huang, Hong-Chih, 2022. "Modeling pandemic mortality risk and its application to mortality-linked security pricing," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 341-363.
    8. Yang, Sharon S. & Wang, Chou-Wen, 2013. "Pricing and securitization of multi-country longevity risk with mortality dependence," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 157-169.
    9. Ai, Jing & Brockett, Patrick L. & Jacobson, Allen F., 2015. "A new defined benefit pension risk measurement methodology," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 40-51.
    10. Huang, Yu-Lieh & Tsai, Jeffrey Tzuhao & Yang, Sharon S. & Cheng, Hung-Wen, 2014. "Price bounds of mortality-linked security in incomplete insurance market," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 30-39.
    11. Helena Aro & Teemu Pennanen, 2013. "Liability-driven investment in longevity risk management," Papers 1307.8261, arXiv.org.
    12. Lin, Tzuling & Tsai, Cary Chi-Liang, 2016. "Hedging mortality/longevity risks of insurance portfolios for life insurer/annuity provider and financial intermediary," Insurance: Mathematics and Economics, Elsevier, vol. 66(C), pages 44-58.
    13. Hunt, Andrew & Blake, David, 2015. "Modelling longevity bonds: Analysing the Swiss Re Kortis bond," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 12-29.
    14. Min Zheng, 2015. "Heterogeneous Expectations and Speculative Behavior in Insurance-Linked Securities," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-12, March.
    15. Liu, Yanxin & Li, Johnny Siu-Hang, 2015. "The age pattern of transitory mortality jumps and its impact on the pricing of catastrophic mortality bonds," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 135-150.
    16. Yijia Lin & Sheen Liu & Jifeng Yu, 2013. "Pricing Mortality Securities With Correlated Mortality Indexes," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(4), pages 921-948, December.
    17. Johnny Siu‐Hang Li & Andrew Cheuk‐Yin Ng, 2011. "Canonical Valuation of Mortality‐Linked Securities," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 78(4), pages 853-884, December.
    18. Josa-Fombellida, Ricardo & Navas, Jorge, 2020. "Time consistent pension funding in a defined benefit pension plan with non-constant discounting," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 142-153.
    19. Ting Wang & Virginia R. Young, 2010. "Hedging Pure Endowments with Mortality Derivatives," Papers 1011.0248, arXiv.org.
    20. Bauer, Daniel & Börger, Matthias & Ruß, Jochen, 2010. "On the pricing of longevity-linked securities," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 139-149, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:63:y:2015:i:c:p:52-65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.