IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

A copula approach to test asymmetric information with applications to predictive modeling

  • Shi, Peng
  • Valdez, Emiliano A.

In this article, we present a copula regression model for testing asymmetric information as well as for predictive modeling applications in automobile insurance market. We use the Frank copula to jointly model the type of coverage and the number of accidents, with the dependence parameter providing for evidence of the relationship between the choice of coverage and the frequency of accidents. This dependence therefore provides an indication of the presence (or absence) of asymmetric information. The type of coverage is in some sense ordered so that coverage with higher ordinals indicate the most comprehensive coverage. Henceforth, a positive relationship would indicate that more coverage is chosen by high risk policyholders, and vice versa. This presence of asymmetric information could be due to either adverse selection or moral hazard, a distinction often made in the economics or insurance literature, or both. We calibrated our copula model using a one-year cross-sectional observation of claims arising from a major automobile insurer in Singapore. Our estimation results indicate a significant positive coverage-risk relationship. However, when we correct for the bias resulting from possible underreporting of accidents, we find that the positive association vanishes. We further used our estimated model for other possible actuarial applications. In particular, we are able to demonstrate the effect of coverage choice on the incidence of accidents, and based on which, the pure premium is derived. In general, a positive margin is observed when compared with the gross premium available in our empirical database.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0167668711000424
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Insurance: Mathematics and Economics.

Volume (Year): 49 (2011)
Issue (Month): 2 (September)
Pages: 226-239

as
in new window

Handle: RePEc:eee:insuma:v:49:y:2011:i:2:p:226-239
Contact details of provider: Web page: http://www.elsevier.com/locate/inca/505554

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Dionne, G. & Doherty, N. & Fombaron, N., 2000. "Adverse Selection in Insurance Markets," Ecole des Hautes Etudes Commerciales de Montreal- 00-05, Ecole des Hautes Etudes Commerciales de Montreal-Chaire de gestion des risques..
  2. Christian Gourieroux & Joann Jasiak, 2007. "Introduction to The Econometrics of Individual Risk: Credit, Insurance, and Marketing
    [The Econometrics of Individual Risk: Credit, Insurance, and Marketing]
    ," Introductory Chapters, Princeton University Press.
  3. A. Colin Cameron & Tong Li & Pravin K. Trivedi & David M. Zimmer, 2004. "Modeling the Differences in Counted Outcomes using Bivariate Copula Models: with Application to Mismeasured Counts," Working Papers 43, University of California, Davis, Department of Economics.
  4. Pierre‐André Chiappori & Bruno Jullien & Bernard Salanié & François Salanié, 2006. "Asymmetric information in insurance: general testable implications," RAND Journal of Economics, RAND Corporation, vol. 37(4), pages 783-798, December.
  5. McDonald, James B, 1984. "Some Generalized Functions for the Size Distribution of Income," Econometrica, Econometric Society, vol. 52(3), pages 647-63, May.
  6. Hyojoung Kim & Doyoung Kim & Subin Im & James W. Hardin, 2009. "Evidence of Asymmetric Information in the Automobile Insurance Market: Dichotomous Versus Multinomial Measurement of Insurance Coverage," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(2), pages 343-366.
  7. Alma Cohen, 2005. "Asymmetric Information and Learning: Evidence from the Automobile Insurance Market," The Review of Economics and Statistics, MIT Press, vol. 87(2), pages 197-207, May.
  8. Cameron, A Colin & Trivedi, Pravin K, 1986. "Econometric Models Based on Count Data: Comparisons and Applications of Some Estimators and Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 1(1), pages 29-53, January.
  9. Bolance, Catalina & Guillen, Montserrat & Pinquet, Jean, 2003. "Time-varying credibility for frequency risk models: estimation and tests for autoregressive specifications on the random effects," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 273-282, October.
  10. J. Pinquet, 1997. "Experience rating through heterogeneous models," THEMA Working Papers 97-25, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
  11. Alma Cohen, 2008. "Asymmetric Learning in Repeated Contracting: An Empirical Study," NBER Working Papers 13752, National Bureau of Economic Research, Inc.
  12. De Meza, D. & Webb, D.C., 2000. "Advantageous Selection in Insurance Market," Discussion Papers 0007, Exeter University, Department of Economics.
  13. Dionne, G. & Vanasse, C., 1988. "A Generalization Of Automobile Insurance Rating Models: The Negative Binomial Distribution With A Regression Component," Cahiers de recherche 8833, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  14. Sun, Jiafeng & Frees, Edward W. & Rosenberg, Marjorie A., 2008. "Heavy-tailed longitudinal data modeling using copulas," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 817-830, April.
  15. Georges Dionne & Pierre-Carl Michaud & Maki Dahchour, 2013. "Separating Moral Hazard From Adverse Selection And Learning In Automobile Insurance: Longitudinal Evidence From France," Journal of the European Economic Association, European Economic Association, vol. 11(4), pages 897-917, 08.
  16. Didier Richaudeau, 1999. "Automobile Insurance Contracts and Risk of Accident: An Empirical Test Using French Individual Data," The Geneva Risk and Insurance Review, Palgrave Macmillan, vol. 24(1), pages 97-114, June.
  17. Boyer, Marcel & Dionne, Georges, 1989. "An Empirical Analysis of Moral Hazard and Experience Rating," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 128-34, February.
  18. Jaap H. Abbring & James J. Heckman & Pierre-André Chiappori & Jean Pinquet, 2003. "Adverse Selection and Moral Hazard In Insurance: Can Dynamic Data Help to Distinguish?," Journal of the European Economic Association, MIT Press, vol. 1(2-3), pages 512-521, 04/05.
  19. Pinquet, J., 1998. "Designing Optimal Bonus-Malus Systems from Different Types of Claims," Papers 9819, Paris X - Nanterre, U.F.R. de Sc. Ec. Gest. Maths Infor..
  20. Murray D. Smith, 2003. "Modelling sample selection using Archimedean copulas," Econometrics Journal, Royal Economic Society, vol. 6(1), pages 99-123, 06.
  21. Alma Cohen & Peter Siegelman, 2009. "Testing for Adverse Selection in Insurance Markets," NBER Working Papers 15586, National Bureau of Economic Research, Inc.
  22. Georges Dionne & Christian Gourieroux & Charles Vanasse, 2001. "Testing for Evidence of Adverse Selection in the Automobile Insurance Market: A Comment," Journal of Political Economy, University of Chicago Press, vol. 109(2), pages 444-473, April.
  23. McDonald, James B & Butler, Richard J, 1987. "Some Generalized Mixture Distributions with an Application to Unemployment Duration," The Review of Economics and Statistics, MIT Press, vol. 69(2), pages 232-40, May.
  24. McDonald, James B. & Xu, Yexiao J., 1995. "A generalization of the beta distribution with applications," Journal of Econometrics, Elsevier, vol. 69(2), pages 427-428, October.
  25. Frees, Edward W. & Valdez, Emiliano A., 2008. "Hierarchical Insurance Claims Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1457-1469.
  26. Cummins, J. David & Dionne, Georges & McDonald, James B. & Pritchett, B. Michael, 1990. "Applications of the GB2 family of distributions in modeling insurance loss processes," Insurance: Mathematics and Economics, Elsevier, vol. 9(4), pages 257-272, December.
  27. Jaap H. Abbring & Pierre-Andre Chiappori, 2004. "Moral Hazard and Dynamic Insurance Data," 2004 Meeting Papers 316, Society for Economic Dynamics.
  28. Puelz, Robert & Snow, Arthur, 1994. "Evidence on Adverse Selection: Equilibrium Signaling and Cross-Subsidization in the Insurance Market," Journal of Political Economy, University of Chicago Press, vol. 102(2), pages 236-57, April.
  29. repec:rje:randje:v:37:y:2006:i:4:p:783-798 is not listed on IDEAS
  30. McDonald, James B. & Butler, Richard J., 1990. "Regression models for positive random variables," Journal of Econometrics, Elsevier, vol. 43(1-2), pages 227-251.
  31. Kuniyoshi Saito, 2006. "Testing for Asymmetric Information in the Automobile Insurance Market Under Rate Regulation," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(2), pages 335-356.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:49:y:2011:i:2:p:226-239. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.