IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v9y2015i4p809-825.html
   My bibliography  Save this article

How to become an important player in scientific collaboration networks?

Author

Listed:
  • Ebadi, Ashkan
  • Schiffauerova, Andrea

Abstract

Scientific collaboration is one of the important drivers of research progress that supports researchers in the generation of novel ideas. Collaboration networks and their impact on scientific activities thus already attracted some attention in the research community, but no work so far studied possible factors which can influence the network positions of the researchers at the individual level. The objective of this paper is to investigate various characteristics and roles of the researchers occupying important positions in the collaboration network. For this purpose, we focus on the collaboration network among Canadian researchers during the period of 1996 to 2010 and employ multiple regression models to estimate the impact on network structure variables. Results highlight the crucial role of past productivity of the researchers along with their available funding in determining and improving their position in the co-authorship network. It is shown that researchers who have great influence on their local community do not necessarily publish high quality works. We also find that highly productive researchers not only have more important connections but also play a critical role in connecting other researchers. Moreover, although mid-career scientists tend to collaborate more in knit groups and on average have higher influence on their local community, our results specifically highlight the important role of young researchers who occupy mediatory positions in the network which enable them to connect different communities and fuel information transmission through the network.

Suggested Citation

  • Ebadi, Ashkan & Schiffauerova, Andrea, 2015. "How to become an important player in scientific collaboration networks?," Journal of Informetrics, Elsevier, vol. 9(4), pages 809-825.
  • Handle: RePEc:eee:infome:v:9:y:2015:i:4:p:809-825
    DOI: 10.1016/j.joi.2015.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157715000565
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adams, James D. & Black, Grant C. & Clemmons, J. Roger & Stephan, Paula E., 2005. "Scientific teams and institutional collaborations: Evidence from U.S. universities, 1981-1999," Research Policy, Elsevier, vol. 34(3), pages 259-285, April.
    2. Gert Sabidussi, 1966. "The centrality index of a graph," Psychometrika, Springer;The Psychometric Society, vol. 31(4), pages 581-603, December.
    3. Payne A. Abigail & Siow Aloysius, 2003. "Does Federal Research Funding Increase University Research Output?," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 3(1), pages 1-24, May.
    4. Beaudry, Catherine & Allaoui, Sedki, 2012. "Impact of public and private research funding on scientific production: The case of nanotechnology," Research Policy, Elsevier, vol. 41(9), pages 1589-1606.
    5. Abbasi, Alireza & Hossain, Liaquat & Leydesdorff, Loet, 2012. "Betweenness centrality as a driver of preferential attachment in the evolution of research collaboration networks," Journal of Informetrics, Elsevier, vol. 6(3), pages 403-412.
    6. Gulbrandsen, Magnus & Smeby, Jens-Christian, 2005. "Industry funding and university professors' research performance," Research Policy, Elsevier, vol. 34(6), pages 932-950, August.
    7. Defazio, Daniela & Lockett, Andy & Wright, Mike, 2009. "Funding incentives, collaborative dynamics and scientific productivity: Evidence from the EU framework program," Research Policy, Elsevier, vol. 38(2), pages 293-305, March.
    8. Porac, Joseph F. & Wade, James B. & Fischer, Harald M. & Brown, Joyce & Kanfer, Alaina & Bowker, Geoffrey, 2004. "Human capital heterogeneity, collaborative relationships, and publication patterns in a multidisciplinary scientific alliance: a comparative case study of two scientific teams," Research Policy, Elsevier, vol. 33(4), pages 661-678, May.
    9. Balconi, Margherita & Laboranti, Andrea, 2006. "University-industry interactions in applied research: The case of microelectronics," Research Policy, Elsevier, vol. 35(10), pages 1616-1630, December.
    10. Abbasi, Alireza & Altmann, Jörn & Hossain, Liaquat, 2011. "Identifying the effects of co-authorship networks on the performance of scholars: A correlation and regression analysis of performance measures and social network analysis measures," Journal of Informetrics, Elsevier, vol. 5(4), pages 594-607.
    11. Jacob, Brian A. & Lefgren, Lars, 2011. "The impact of research grant funding on scientific productivity," Journal of Public Economics, Elsevier, vol. 95(9), pages 1168-1177.
    12. Robert J W Tijssen & Thed N van Leeuwen & Joke C Korevaar, 1996. "Scientific publication activity of industry in the Netherlands," Research Evaluation, Oxford University Press, vol. 6(2), pages 105-119, August.
    13. Ben R. Martin, 2003. "The Changing Social Contract for Science and the Evolution of the University," Chapters, in: Aldo Geuna & Ammon J. Salter & W. Edward Steinmueller (ed.),Science and Innovation, chapter 1, Edward Elgar Publishing.
    14. Hakansson, Hakan & Ford, David, 2002. "How should companies interact in business networks?," Journal of Business Research, Elsevier, vol. 55(2), pages 133-139, February.
    15. Katz, J. Sylvan & Martin, Ben R., 1997. "What is research collaboration?," Research Policy, Elsevier, vol. 26(1), pages 1-18, March.
    16. He, Zi-Lin & Geng, Xue-Song & Campbell-Hunt, Colin, 2009. "Research collaboration and research output: A longitudinal study of 65 biomedical scientists in a New Zealand university," Research Policy, Elsevier, vol. 38(2), pages 306-317, March.
    17. Bozeman, Barry & Corley, Elizabeth, 2004. "Scientists' collaboration strategies: implications for scientific and technical human capital," Research Policy, Elsevier, vol. 33(4), pages 599-616, May.
    18. Ubfal, Diego & Maffioli, Alessandro, 2011. "The impact of funding on research collaboration: Evidence from a developing country," Research Policy, Elsevier, vol. 40(9), pages 1269-1279.
    19. Melissa A. Schilling & Corey C. Phelps, 2007. "Interfirm Collaboration Networks: The Impact of Large-Scale Network Structure on Firm Innovation," Management Science, INFORMS, vol. 53(7), pages 1113-1126, July.
    20. Dangalchev, Chavdar, 2006. "Residual closeness in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 365(2), pages 556-564.
    21. Cummings, Jonathon N. & Kiesler, Sara, 2007. "Coordination costs and project outcomes in multi-university collaborations," Research Policy, Elsevier, vol. 36(10), pages 1620-1634, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kong, Xiangjie & Mao, Mengyi & Jiang, Huizhen & Yu, Shuo & Wan, Liangtian, 2019. "How does collaboration affect researchers’ positions in co-authorship networks?," Journal of Informetrics, Elsevier, vol. 13(3), pages 887-900.
    2. Jianlin Zhou & An Zeng & Ying Fan & Zengru Di, 2018. "Identifying important scholars via directed scientific collaboration networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 1327-1343, March.
    3. Yang Li & Huajiao Li & Nairong Liu & Xueyong Liu, 2018. "Important institutions of interinstitutional scientific collaboration networks in materials science," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 85-103, October.
    4. Mengjiao Qi & An Zeng & Menghui Li & Ying Fan & Zengru Di, 2017. "Standing on the shoulders of giants: the effect of outstanding scientists on young collaborators’ careers," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1839-1850, June.
    5. Zhao, Star X. & Tan, Alice M. & Yu, Shuang & Xu, Xin, 2018. "Analyzing the research funding in physics: The perspective of production and collaboration at institution level," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 662-674.
    6. Amjad, Tehmina & Ding, Ying & Xu, Jian & Zhang, Chenwei & Daud, Ali & Tang, Jie & Song, Min, 2017. "Standing on the shoulders of giants," Journal of Informetrics, Elsevier, vol. 11(1), pages 307-323.
    7. Star X. Zhao & Shuang Yu & Alice M. Tan & Xin Xu & Haiyan Yu, 2016. "Global pattern of science funding in economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(1), pages 463-479, October.
    8. Etienne Farvaque & Frédéric Gannon, 2018. "Profiling giants: the networks and influence of Buchanan and Tullock," Public Choice, Springer, vol. 175(3), pages 277-302, June.
    9. Thor-Erik Sandberg Hanssen & Finn Jørgensen & Berner Larsen, 2018. "The relation between the quality of research, researchers’ experience, and their academic environment," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 933-950, March.
    10. Ashkan Ebadi & Andrea Schiffauerova, 2016. "iSEER: an intelligent automatic computer system for scientific evaluation of researchers," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 477-498, May.
    11. Ashkan Ebadi & Andrea Schiffauerova, 2016. "How to boost scientific production? A statistical analysis of research funding and other influencing factors," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(3), pages 1093-1116, March.
    12. Ebadi, Ashkan & Tremblay, Stéphane & Goutte, Cyril & Schiffauerova, Andrea, 2020. "Application of machine learning techniques to assess the trends and alignment of the funded research output," Journal of Informetrics, Elsevier, vol. 14(2).
    13. Jing Tu, 2019. "What connections lead to good scientific performance?," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(2), pages 587-604, February.
    14. Nuha Zamzami & Andrea Schiffauerova, 2017. "The impact of individual collaborative activities on knowledge creation and transmission," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1385-1413, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:9:y:2015:i:4:p:809-825. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/joi .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.