IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v85y2010i3d10.1007_s11192-010-0254-0.html
   My bibliography  Save this article

The structure of collaboration in the Journal of Finance

Author

Listed:
  • Choong Kwai Fatt

    () (University of Malaya)

  • Ephrance Abu Ujum

    (University of Malaya)

  • Kuru Ratnavelu

    (University of Malaya)

Abstract

This paper studies the structure of collaboration in the Journal of Finance for the period 1980–2009 using publication data from the Social Sciences Citation Index (SSCI). There are 3,840 publications within this period, out of which 58% are collaborations. These collaborations form 405 components, with the giant component capturing approximately 54% of total coauthors (it is estimated that the upper limit of distinct JF coauthors is 2,536, obtained from the total number of distinct author keywords found within the study period). In comparison, the second largest component has only 13 members. The giant component has mean degree 3 and average distance 8.2. It exhibits power-law scaling with exponent α = 3.5 for vertices with degree ≥5. Based on the giant component, the degree, closeness and betweenness centralization score, as well as the hubs/authorities score is determined. The findings indicate that the most important vertex on the giant component coincides with Sheridan Titman based on his top ten ranking on all four scores.

Suggested Citation

  • Choong Kwai Fatt & Ephrance Abu Ujum & Kuru Ratnavelu, 2010. "The structure of collaboration in the Journal of Finance," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(3), pages 849-860, December.
  • Handle: RePEc:spr:scient:v:85:y:2010:i:3:d:10.1007_s11192-010-0254-0
    DOI: 10.1007/s11192-010-0254-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-010-0254-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hildrun Kretschmer, 2004. "Author productivity and geodesic distance in bibliographic co-authorship networks, and visibility on the Web," Scientometrics, Springer;Akadémiai Kiadó, vol. 60(3), pages 409-420, August.
    2. Barabási, A.L & Jeong, H & Néda, Z & Ravasz, E & Schubert, A & Vicsek, T, 2002. "Evolution of the social network of scientific collaborations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 311(3), pages 590-614.
    3. Borokhovich, Kenneth A & Bricker, Robert J & Simkins, Betty J, 1994. "Journal Communication and Influence in Financial Research," Journal of Finance, American Finance Association, vol. 49(2), pages 713-725, June.
    4. Haiyang Lu & Yuqiang Feng, 2009. "A measure of authors’ centrality in co-authorship networks based on the distribution of collaborative relationships," Scientometrics, Springer;Akadémiai Kiadó, vol. 81(2), pages 499-511, November.
    5. Barabási, Albert-László & Albert, Réka & Jeong, Hawoong, 1999. "Mean-field theory for scale-free random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 272(1), pages 173-187.
    6. Ronald Rousseau & Lin Zhang, 2008. "Betweenness centrality and Q-measures in directed valued networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 75(3), pages 575-590, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sameer Kumar & Jariah Mohd. Jan, 2014. "Research collaboration networks of two OIC nations: comparative study between Turkey and Malaysia in the field of ‘Energy Fuels’, 2009–2011," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 387-414, January.
    2. Roberto Lalli & Riaz Howey & Dirk Wintergrün, 2020. "The dynamics of collaboration networks and the history of general relativity, 1925–1970," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 1129-1170, February.
    3. Guijie Zhang & Luning Liu & Yuqiang Feng & Zhen Shao & Yongli Li, 2014. "Cext-N index: a network node centrality measure for collaborative relationship distribution," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 291-307, October.
    4. Andrikopoulos, Andreas & Trichas, Georgios, 2018. "Publication patterns and coauthorship in the Journal of Corporate Finance," Journal of Corporate Finance, Elsevier, vol. 51(C), pages 98-108.
    5. Tolga Yuret, 2020. "Co-worker network: How closely are researchers who published in the top five economics journals related?," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 2301-2317, September.
    6. Tolga Yuret, 0. "Co-worker network: How closely are researchers who published in the top five economics journals related?," Scientometrics, Springer;Akadémiai Kiadó, vol. 0, pages 1-17.
    7. Yongli Li & Guijie Zhang & Yuqiang Feng & Chong Wu, 2015. "An entropy-based social network community detecting method and its application to scientometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 1003-1017, January.
    8. Guijie Zhang & Luning Liu & Fangfang Wei, 2019. "Key nodes mining in the inventor–author knowledge diffusion network," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 721-735, March.
    9. Samitas, Aristeidis & Kampouris, Elias, 2018. "Empirical investigation of co-authorship in the field of finance: A network perspective," International Review of Financial Analysis, Elsevier, vol. 58(C), pages 235-246.
    10. Sameer Kumar & Jariah Mohd. Jan, 2013. "Mapping research collaborations in the business and management field in Malaysia, 1980–2010," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(3), pages 491-517, December.
    11. Juan-Carlos Valderrama-Zurián & Remedios Aguilar-Moya & Antonio Cepeda-Benito & David Melero-Fuentes & María-Ángeles Navarro-Moreno & Asunción Gandía-Balaguer & Rafael Aleixandre-Benavent, 2017. "Productivity trends and collaboration patterns: A diachronic study in the eating disorders field," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luka Kronegger & Anuška Ferligoj & Patrick Doreian, 2011. "On the dynamics of national scientific systems," Quality & Quantity: International Journal of Methodology, Springer, vol. 45(5), pages 989-1015, August.
    2. Georg Groh & Christoph Fuchs, 2011. "Multi-modal social networks for modeling scientific fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(2), pages 569-590, November.
    3. Chen, Qinghua & Chen, Shenghui, 2007. "A highly clustered scale-free network evolved by random walking," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 773-781.
    4. Iina Hellsten & Renaud Lambiotte & Andrea Scharnhorst & Marcel Ausloos, 2007. "Self-citations, co-authorships and keywords: A new approach to scientists’ field mobility?," Scientometrics, Springer;Akadémiai Kiadó, vol. 72(3), pages 469-486, September.
    5. Dangalchev, Chavdar, 2004. "Generation models for scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(3), pages 659-671.
    6. Rezaei, Soghra & Moghaddasi, Hanieh & Darooneh, Amir Hossein, 2018. "Preferential attachment in evolutionary earthquake networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 172-179.
    7. Peter Mutschke & Philipp Mayr & Philipp Schaer & York Sure, 2011. "Science models as value-added services for scholarly information systems," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 349-364, October.
    8. James Ma & Daniel Zeng & Huimin Zhao, 2012. "Modeling the growth of complex software function dependency networks," Information Systems Frontiers, Springer, vol. 14(2), pages 301-315, April.
    9. Chen, Tao & Shao, Zhi-Gang, 2012. "Power-law accelerating growth complex networks with mixed attachment mechanisms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2778-2787.
    10. Peter Mutschke & Philipp Mayr, 2015. "Science models for search: a study on combining scholarly information retrieval and scientometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2323-2345, March.
    11. Lixin Chen & Ronald Rousseau, 2008. "Q-measures for binary divided networks: Bridges between German and English institutes in publications of the Journal of Fluid Mechanics," Scientometrics, Springer;Akadémiai Kiadó, vol. 74(1), pages 57-69, January.
    12. Lublóy, Ágnes & Szenes, Márk, 2007. "Az ügyfélelvándorlás kereskedelmi banki modellezése [Modelling the migration of commercial bank clients]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(10), pages 915-934.
    13. Šubelj, Lovro & Fiala, Dalibor & Ciglarič, Tadej & Kronegger, Luka, 2019. "Convexity in scientific collaboration networks," Journal of Informetrics, Elsevier, vol. 13(1), pages 10-31.
    14. Marian-Gabriel Hâncean & Matjaž Perc & Lazăr Vlăsceanu, 2014. "Fragmented Romanian Sociology: Growth and Structure of the Collaboration Network," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-9, November.
    15. Raf Guns & Yu Xian Liu & Dilruba Mahbuba, 2011. "Q-measures and betweenness centrality in a collaboration network: a case study of the field of informetrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 87(1), pages 133-147, April.
    16. Liang, Wei & Shi, Yuming & Huang, Qiuling, 2014. "Modeling the Chinese language as an evolving network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 268-276.
    17. Lemarchand, Guillermo A., 2012. "The long-term dynamics of co-authorship scientific networks: Iberoamerican countries (1973–2010)," Research Policy, Elsevier, vol. 41(2), pages 291-305.
    18. Ann Bostrom & Ragnar E. Löfstedt, 2003. "Communicating Risk: Wireless and Hardwired," Risk Analysis, John Wiley & Sons, vol. 23(2), pages 241-248, April.
    19. Pirvu Daniela & Barbuceanu Mircea, 2016. "Recent Contributions Of The Statistical Physics In The Research Of Banking, Stock Exchange And Foreign Exchange Markets," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 2, pages 85-92, April.
    20. Yan Qiang & Bo Pei & Weili Wu & Juanjuan Zhao & Xiaolong Zhang & Yue Li & Lidong Wu, 2014. "Improvement of path analysis algorithm in social networks based on HBase," Journal of Combinatorial Optimization, Springer, vol. 28(3), pages 588-599, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:85:y:2010:i:3:d:10.1007_s11192-010-0254-0. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.