IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v114y2018i3d10.1007_s11192-017-2619-0.html
   My bibliography  Save this article

Identifying important scholars via directed scientific collaboration networks

Author

Listed:
  • Jianlin Zhou

    (Beijing Normal University)

  • An Zeng

    () (Beijing Normal University)

  • Ying Fan

    () (Beijing Normal University)

  • Zengru Di

    (Beijing Normal University)

Abstract

Scientific collaboration plays an important role in the knowledge production and scientific development. Researchers have investigated numerous aspects of scientific collaboration by constructing scientific collaboration networks. And we can perform node centrality analysis on the scientific collaboration networks to identify important scholars. In these collaboration networks, two scientists are linked if they have coauthored at least one paper and the way of constructing these networks is based on the assumption that each author’s contribution to an article is the same. However, the authors’ contributions to an article are unequal in reality and we should pay attention to the impact of this unequal credit allocation on the understanding of scientific collaboration. In this paper, we regard the first author as the most important contributor to an article and build a directed scientific collaboration network. Then we identify important scholars by analyzing this directed network. For one thing, we investigate the difference between the undirected and directed scientific collaboration network in network properties and centrality analysis. For another, we apply different centrality indices: betweenness, PageRank, SIR and HITS to the directed scientific collaboration network. As a result, we find that each indicator has a different performance and the PageRank algorithm and SIR show highly positive correlation with in-degree. The HITS algorithm also shows better property which can hep us distinguish potential young scholars and identify important collaborators.

Suggested Citation

  • Jianlin Zhou & An Zeng & Ying Fan & Zengru Di, 2018. "Identifying important scholars via directed scientific collaboration networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 1327-1343, March.
  • Handle: RePEc:spr:scient:v:114:y:2018:i:3:d:10.1007_s11192-017-2619-0
    DOI: 10.1007/s11192-017-2619-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-017-2619-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ebadi, Ashkan & Schiffauerova, Andrea, 2015. "How to become an important player in scientific collaboration networks?," Journal of Informetrics, Elsevier, vol. 9(4), pages 809-825.
    2. Peng Liu & Haoxiang Xia, 2015. "Structure and evolution of co-authorship network in an interdisciplinary research field," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(1), pages 101-134, April.
    3. Jinseok Kim & Jana Diesner, 2015. "Coauthorship networks: A directed network approach considering the order and number of coauthors," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(12), pages 2685-2696, December.
    4. Ding, Ying, 2011. "Scientific collaboration and endorsement: Network analysis of coauthorship and citation networks," Journal of Informetrics, Elsevier, vol. 5(1), pages 187-203.
    5. Erjia Yan & Ying Ding & Cassidy R. Sugimoto, 2011. "P-Rank: An indicator measuring prestige in heterogeneous scholarly networks," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(3), pages 467-477, March.
    6. T. S. Evans & R. Lambiotte & P. Panzarasa, 2011. "Community structure and patterns of scientific collaboration in Business and Management," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 381-396, October.
    7. Li Zhai & Xiujuan Li & Xiangbin Yan & Weiguo Fan, 2014. "Evolutionary analysis of collaboration networks in the field of information systems," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(3), pages 1657-1677, December.
    8. Fuyuki Yoshikane & Takayuki Nozawa & Keita Tsuji, 2006. "Comparative analysis of co-authorship networks considering authors' roles in collaboration: Differences between the theoretical and application areas," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(3), pages 643-655, September.
    9. Haiyang Lu & Yuqiang Feng, 2009. "A measure of authors’ centrality in co-authorship networks based on the distribution of collaborative relationships," Scientometrics, Springer;Akadémiai Kiadó, vol. 81(2), pages 499-511, November.
    10. Mengjiao Qi & An Zeng & Menghui Li & Ying Fan & Zengru Di, 2017. "Standing on the shoulders of giants: the effect of outstanding scientists on young collaborators’ careers," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1839-1850, June.
    11. ., 2017. "Standing on the shoulders of giants," Chapters, in: Endogenous Innovation, chapter 1, pages 3-24, Edward Elgar Publishing.
    12. Amjad, Tehmina & Ding, Ying & Xu, Jian & Zhang, Chenwei & Daud, Ali & Tang, Jie & Song, Min, 2017. "Standing on the shoulders of giants," Journal of Informetrics, Elsevier, vol. 11(1), pages 307-323.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Li & Huajiao Li & Nairong Liu & Xueyong Liu, 2018. "Important institutions of interinstitutional scientific collaboration networks in materials science," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 85-103, October.
    2. Fan Jiang & Nian Cai Liu, 2020. "New wine in old bottles? Examining institutional hierarchy in laureate mobility networks, 1900–2017," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(2), pages 1291-1304, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kong, Xiangjie & Mao, Mengyi & Jiang, Huizhen & Yu, Shuo & Wan, Liangtian, 2019. "How does collaboration affect researchers’ positions in co-authorship networks?," Journal of Informetrics, Elsevier, vol. 13(3), pages 887-900.
    2. Rodica Ioana Lung & Noémi Gaskó & Mihai Alexandru Suciu, 2018. "A hypergraph model for representing scientific output," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 1361-1379, December.
    3. Jun Zhang & Yan Hu & Zhaolong Ning & Amr Tolba & Elsayed Elashkar & Feng Xia, 2018. "AIRank: Author Impact Ranking through Positions in Collaboration Networks," Complexity, Hindawi, vol. 2018, pages 1-16, June.
    4. Samreen Ayaz & Nayyer Masood & Muhammad Arshad Islam, 2018. "Predicting scientific impact based on h-index," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 993-1010, March.
    5. Xiomara S. Q. Chacon & Thiago C. Silva & Diego R. Amancio, 2020. "Comparing the impact of subfields in scientific journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 625-639, October.
    6. Ali Daud & Min Song & Malik Khizar Hayat & Tehmina Amjad & Rabeeh Ayaz Abbasi & Hassan Dawood & Anwar Ghani, 2020. "Finding rising stars in bibliometric networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 633-661, July.
    7. Jiaying Liu & Tao Tang & Xiangjie Kong & Amr Tolba & Zafer AL-Makhadmeh & Feng Xia, 2018. "Understanding the advisor–advisee relationship via scholarly data analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 161-180, July.
    8. Wang, Wei & Ren, Jing & Alrashoud, Mubarak & Xia, Feng & Mao, Mengyi & Tolba, Amr, 2020. "Early-stage reciprocity in sustainable scientific collaboration," Journal of Informetrics, Elsevier, vol. 14(3).
    9. Lu, Chao & Bu, Yi & Dong, Xianlei & Wang, Jie & Ding, Ying & Larivière, Vincent & Sugimoto, Cassidy R. & Paul, Logan & Zhang, Chengzhi, 2019. "Analyzing linguistic complexity and scientific impact," Journal of Informetrics, Elsevier, vol. 13(3), pages 817-829.
    10. Jeong, Yujin & Park, Inchae & Yoon, Byungun, 2019. "Identifying emerging Research and Business Development (R&BD) areas based on topic modeling and visualization with intellectual property right data," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 655-672.
    11. Marian-Gabriel Hâncean & Matjaž Perc & Jürgen Lerner, 2021. "The coauthorship networks of the most productive European researchers," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 201-224, January.
    12. Sahatqija, Kosovare & Kadriu, Arbana, 2019. "Exploring Gender Role in Co-Authorship Networks for Computing Books: A Case Study in DBLP," Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference (2019), Rovinj, Croatia, in: Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference, Rovinj, Croatia, 12-14 September 2019, pages 33-39, IRENET - Society for Advancing Innovation and Research in Economy, Zagreb.
    13. Walters, William H., 2017. "Do subjective journal ratings represent whole journals or typical articles? Unweighted or weighted citation impact?," Journal of Informetrics, Elsevier, vol. 11(3), pages 730-744.
    14. Dejian Yu & Wanru Wang & Shuai Zhang & Wenyu Zhang & Rongyu Liu, 2017. "A multiple-link, mutually reinforced journal-ranking model to measure the prestige of journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 521-542, April.
    15. Yi Bu & Binglu Wang & Win-bin Huang & Shangkun Che & Yong Huang, 2018. "Using the appearance of citations in full text on author co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 275-289, July.
    16. Peng Liu & Haoxiang Xia, 2015. "Structure and evolution of co-authorship network in an interdisciplinary research field," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(1), pages 101-134, April.
    17. Yongjun Zhu & Erjia Yan, 2015. "Dynamic subfield analysis of disciplines: an examination of the trading impact and knowledge diffusion patterns of computer science," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(1), pages 335-359, July.
    18. Etienne Farvaque & Frédéric Gannon, 2018. "Profiling giants: the networks and influence of Buchanan and Tullock," Public Choice, Springer, vol. 175(3), pages 277-302, June.
    19. Jun-Ping Qiu & Ke Dong & Hou-Qiang Yu, 2014. "Comparative study on structure and correlation among author co-occurrence networks in bibliometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1345-1360, November.
    20. Georg Groh & Christoph Fuchs, 2011. "Multi-modal social networks for modeling scientific fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(2), pages 569-590, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:114:y:2018:i:3:d:10.1007_s11192-017-2619-0. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.