IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v11y2017i1p307-323.html
   My bibliography  Save this article

Standing on the shoulders of giants

Author

Listed:
  • Amjad, Tehmina
  • Ding, Ying
  • Xu, Jian
  • Zhang, Chenwei
  • Daud, Ali
  • Tang, Jie
  • Song, Min

Abstract

Young scholars in academia often seek to work in collaboration with top researchers in their field in pursuit of a successful career. While success in academia can be defined differently, everyone agrees that training with a well-known researcher can help lead to an efficacious career. This study aims to investigate whether collaborating with established scientists does, in fact, improve junior scholars’ chances of success. If not, what makes young scientists soar in their academic careers? We investigate this question by analyzing the effect of collaboration with a known-star on success of a young scholar. The results suggest that working with leading experts can lead to a successful career, but that it is not the only way. Researchers who were not fortunate enough to start their career with an elite researcher could still succeed through hard work and passion. These findings emerged from analyses of two discrete sets of well-known scholars on the career of newcomers, suggesting their strength and validity.

Suggested Citation

  • Amjad, Tehmina & Ding, Ying & Xu, Jian & Zhang, Chenwei & Daud, Ali & Tang, Jie & Song, Min, 2017. "Standing on the shoulders of giants," Journal of Informetrics, Elsevier, vol. 11(1), pages 307-323.
  • Handle: RePEc:eee:infome:v:11:y:2017:i:1:p:307-323
    DOI: 10.1016/j.joi.2017.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157716302942
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2017.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ebadi, Ashkan & Schiffauerova, Andrea, 2015. "How to become an important player in scientific collaboration networks?," Journal of Informetrics, Elsevier, vol. 9(4), pages 809-825.
    2. Daniel E. Acuna & Stefano Allesina & Konrad P. Kording, 2012. "Predicting scientific success," Nature, Nature, vol. 489(7415), pages 201-202, September.
    3. Ali Daud & Muhammad Ahmad & M. S. I. Malik & Dunren Che, 2015. "Using machine learning techniques for rising star prediction in co-author network," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(2), pages 1687-1711, February.
    4. Vicki (Baker) Sweitzer, 2009. "Towards a Theory of Doctoral Student Professional Identity Development: A Developmental Networks Approach," The Journal of Higher Education, Taylor & Francis Journals, vol. 80(1), pages 1-33, January.
    5. Kaur, Jasleen & Ferrara, Emilio & Menczer, Filippo & Flammini, Alessandro & Radicchi, Filippo, 2015. "Quality versus quantity in scientific impact," Journal of Informetrics, Elsevier, vol. 9(4), pages 800-808.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wanjun Xia & Tianrui Li & Chongshou Li, 2023. "A review of scientific impact prediction: tasks, features and methods," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(1), pages 543-585, January.
    2. Jorge A. V. Tohalino & Laura V. C. Quispe & Diego R. Amancio, 2021. "Analyzing the relationship between text features and grants productivity," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4255-4275, May.
    3. Mengjiao Qi & An Zeng & Menghui Li & Ying Fan & Zengru Di, 2017. "Standing on the shoulders of giants: the effect of outstanding scientists on young collaborators’ careers," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1839-1850, June.
    4. Zhiya Zuo & Kang Zhao, 2021. "Understanding and predicting future research impact at different career stages—A social network perspective," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(4), pages 454-472, April.
    5. Martin Ricker, 2017. "Letter to the Editor: About the quality and impact of scientific articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1851-1855, June.
    6. Letchford, Adrian & Preis, Tobias & Moat, Helen Susannah, 2016. "The advantage of simple paper abstracts," Journal of Informetrics, Elsevier, vol. 10(1), pages 1-8.
    7. Hyungjo Hur & Maryam A Andalib & Julie A Maurer & Joshua D Hawley & Navid Ghaffarzadegan, 2017. "Recent trends in the U.S. Behavioral and Social Sciences Research (BSSR) workforce," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-18, February.
    8. Shahd Al-Janabi & Lee Wei Lim & Luca Aquili, 2021. "Development of a tool to accurately predict UK REF funding allocation," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 8049-8062, September.
    9. Etienne Farvaque & Frédéric Gannon, 2018. "Profiling giants: the networks and influence of Buchanan and Tullock," Public Choice, Springer, vol. 175(3), pages 277-302, June.
    10. Hao Liao & Rui Xiao & Giulio Cimini & Matúš Medo, 2014. "Network-Driven Reputation in Online Scientific Communities," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-18, December.
    11. Rodrigo Dorantes-Gilardi & Aurora A. Ramírez-Álvarez & Diana Terrazas-Santamaría, 2023. "Is there a differentiated gender effect of collaboration with super-cited authors? Evidence from junior researchers in economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(4), pages 2317-2336, April.
    12. Jakub Rybacki & Dobromił Serwa, 2021. "What Makes a Successful Scientist in a Central Bank? Evidence From the RePEc Database," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 13(3), pages 331-357, September.
    13. Schreiber, Michael, 2013. "How relevant is the predictive power of the h-index? A case study of the time-dependent Hirsch index," Journal of Informetrics, Elsevier, vol. 7(2), pages 325-329.
    14. Álvarez-Bornstein, Belén & Bordons, María, 2021. "Is funding related to higher research impact? Exploring its relationship and the mediating role of collaboration in several disciplines," Journal of Informetrics, Elsevier, vol. 15(1).
    15. Yubing Nie & Yifan Zhu & Qika Lin & Sifan Zhang & Pengfei Shi & Zhendong Niu, 2019. "Academic rising star prediction via scholar’s evaluation model and machine learning techniques," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 461-476, August.
    16. Chung, Jaemin & Ko, Namuk & Kim, Hyeonsu & Yoon, Janghyeok, 2021. "Inventor profile mining approach for prospective human resource scouting," Journal of Informetrics, Elsevier, vol. 15(1).
    17. Jeong, Yoo Kyung & Xie, Qing & Yan, Erjia & Song, Min, 2020. "Examining drug and side effect relation using author–entity pair bipartite networks," Journal of Informetrics, Elsevier, vol. 14(1).
    18. Tóth, István & Lázár, Zsolt I. & Varga, Levente & Járai-Szabó, Ferenc & Papp, István & Florian, Răzvan V. & Ercsey-Ravasz, Mária, 2021. "Mitigating ageing bias in article level metrics using citation network analysis," Journal of Informetrics, Elsevier, vol. 15(1).
    19. Lina M. Cortés & Andrés Mora-Valencia & Javier Perote, 2016. "The productivity of top researchers: a semi-nonparametric approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 891-915, November.
    20. Kun Chen & Xia-xia Gao & Yi-di Huang & Wen-tao Xu & Guo-liang Yang, 2024. "The dual dimension of scientific research experience acquisition and its development: a 40-year analysis of Chinese Humanities and Social Sciences Journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(5), pages 2827-2853, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:11:y:2017:i:1:p:307-323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.