IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v11y2017i2p608-621.html
   My bibliography  Save this article

The time dimension of science: Connecting the past to the future

Author

Listed:
  • Yin, Yian
  • Wang, Dashun

Abstract

A central question in science of science concerns how time affects citations. Despite the long-standing interests and its broad impact, we lack systematic answers to this simple yet fundamental question. By reviewing and classifying prior studies for the past 50 years, we find a significant lack of consensus in the literature, primarily due to the coexistence of retrospective and prospective approaches to measuring citation age distributions. These two approaches have been pursued in parallel, lacking any known connections between the two. Here we developed a new theoretical framework that not only allows us to connect the two approaches through precise mathematical relationships, it also helps us reconcile the interplay between temporal decay of citations and the growth of science, helping us uncover new functional forms characterizing citation age distributions. We find retrospective distribution follows a lognormal distribution with exponential cutoff, while prospective distribution is governed by the interplay between a lognormal distribution and the growth in the number of references. Most interestingly, the two approaches can be connected once rescaled by the growth of publications and citations. We further validate our framework using both large-scale citation datasets and analytical models capturing citation dynamics. Together this paper presents a comprehensive analysis of the time dimension of science, representing a new empirical and theoretical basis for all future studies in this area.

Suggested Citation

  • Yin, Yian & Wang, Dashun, 2017. "The time dimension of science: Connecting the past to the future," Journal of Informetrics, Elsevier, vol. 11(2), pages 608-621.
  • Handle: RePEc:eee:infome:v:11:y:2017:i:2:p:608-621
    DOI: 10.1016/j.joi.2017.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157717300020
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2017.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thijs Pollman, 2000. "Forgetting and the Ageing of Scientific Publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 47(1), pages 43-54, January.
    2. Katalin Orosz & Illés J. Farkas & Péter Pollner, 2016. "Quantifying the changing role of past publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(2), pages 829-853, August.
    3. E. Garfield & I. H. Sher, 1963. "New factors in the evaluation of scientific literature through citation indexing," American Documentation, Wiley Blackwell, vol. 14(3), pages 195-201, July.
    4. Amin Mazloumian & Young-Ho Eom & Dirk Helbing & Sergi Lozano & Santo Fortunato, 2011. "How Citation Boosts Promote Scientific Paradigm Shifts and Nobel Prizes," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-6, May.
    5. Benjamin F. Jones, 2011. "As Science Evolves, How Can Science Policy?," NBER Chapters, in: Innovation Policy and the Economy, Volume 11, pages 103-131, National Bureau of Economic Research, Inc.
    6. Richard Van Noorden & Brendan Maher & Regina Nuzzo, 2014. "The top 100 papers," Nature, Nature, vol. 514(7524), pages 550-553, October.
    7. Albert-László Barabási & Chaoming Song & Dashun Wang, 2012. "Handful of papers dominates citation," Nature, Nature, vol. 491(7422), pages 40-40, November.
    8. S. Redner, 1998. "How popular is your paper? An empirical study of the citation distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 4(2), pages 131-134, July.
    9. Anthony F. J. van Raan, 2004. "Sleeping Beauties in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 59(3), pages 467-472, March.
    10. Carolin Michels & Ulrich Schmoch, 2012. "The growth of science and database coverage," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(3), pages 831-846, December.
    11. Aurel Avramescu, 1979. "Actuality and Obsolescence of Scientific Literature," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 30(5), pages 296-303, September.
    12. Parolo, Pietro Della Briotta & Pan, Raj Kumar & Ghosh, Rumi & Huberman, Bernardo A. & Kaski, Kimmo & Fortunato, Santo, 2015. "Attention decay in science," Journal of Informetrics, Elsevier, vol. 9(4), pages 734-745.
    13. Michael J. Stringer & Marta Sales-Pardo & Luís A. Nunes Amaral, 2010. "Statistical validation of a global model for the distribution of the ultimate number of citations accrued by papers published in a scientific journal," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(7), pages 1377-1385, July.
    14. Michael J Stringer & Marta Sales-Pardo & Luís A Nunes Amaral, 2008. "Effectiveness of Journal Ranking Schemes as a Tool for Locating Information," PLOS ONE, Public Library of Science, vol. 3(2), pages 1-8, February.
    15. Julia Lane, 2010. "Let's make science metrics more scientific," Nature, Nature, vol. 464(7288), pages 488-489, March.
    16. Daniel E. Acuna & Stefano Allesina & Konrad P. Kording, 2012. "Predicting scientific success," Nature, Nature, vol. 489(7415), pages 201-202, September.
    17. Tadeusz K. Krauze & Claude Hillinger, 1971. "Citations, references and the growth of scientific literature: A model of dynamic interaction," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 22(5), pages 333-336, September.
    18. Young-Ho Eom & Santo Fortunato, 2011. "Characterizing and Modeling Citation Dynamics," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-7, September.
    19. Mikhail V. Simkin & Vwani P. Roychowdhury, 2007. "A mathematical theory of citing," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(11), pages 1661-1673, September.
    20. Miguel R. Guevara & Dominik Hartmann & Manuel Aristarán & Marcelo Mendoza & César A. Hidalgo, 2016. "The research space: using career paths to predict the evolution of the research output of individuals, institutions, and nations," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1695-1709, December.
    21. Lindell Bromham & Russell Dinnage & Xia Hua, 2016. "Interdisciplinary research has consistently lower funding success," Nature, Nature, vol. 534(7609), pages 684-687, June.
    22. Hamid Bouabid, 2011. "Revisiting citation aging: a model for citation distribution and life-cycle prediction," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(1), pages 199-211, July.
    23. Jonathan Adams, 2013. "The fourth age of research," Nature, Nature, vol. 497(7451), pages 557-560, May.
    24. Jordi Duch & Xiao Han T Zeng & Marta Sales-Pardo & Filippo Radicchi & Shayna Otis & Teresa K Woodruff & Luís A Nunes Amaral, 2012. "The Possible Role of Resource Requirements and Academic Career-Choice Risk on Gender Differences in Publication Rate and Impact," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-11, December.
    25. Quentin L. Burrell, 2002. "Modelling citation age data: Simple graphical methods from reliability theory," Scientometrics, Springer;Akadémiai Kiadó, vol. 55(2), pages 273-285, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Yiling & Evans, James A. & Wu, Lingfei, 2022. "New directions in science emerge from disconnection and discord," Journal of Informetrics, Elsevier, vol. 16(1).
    2. Binglu Wang & Yi Bu & Yang Xu, 2018. "A quantitative exploration on reasons for citing articles from the perspective of cited authors," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 675-687, August.
    3. Shutian Ma & Chengzhi Zhang & Xiaozhong Liu, 2020. "A review of citation recommendation: from textual content to enriched context," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1445-1472, March.
    4. Petersen, Alexander M. & Pan, Raj K. & Pammolli, Fabio & Fortunato, Santo, 2019. "Methods to account for citation inflation in research evaluation," Research Policy, Elsevier, vol. 48(7), pages 1855-1865.
    5. Wu, Lingfei & Kittur, Aniket & Youn, Hyejin & Milojević, Staša & Leahey, Erin & Fiore, Stephen M. & Ahn, Yong-Yeol, 2022. "Metrics and mechanisms: Measuring the unmeasurable in the science of science," Journal of Informetrics, Elsevier, vol. 16(2).
    6. Pan, Raj K. & Petersen, Alexander M. & Pammolli, Fabio & Fortunato, Santo, 2018. "The memory of science: Inflation, myopia, and the knowledge network," Journal of Informetrics, Elsevier, vol. 12(3), pages 656-678.
    7. Anthony G. Stacey, 2021. "Ages of cited references and growth of scientific knowledge: an explication of the gamma distribution in business and management disciplines," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 619-640, January.
    8. Wang, Wei & Ren, Jing & Alrashoud, Mubarak & Xia, Feng & Mao, Mengyi & Tolba, Amr, 2020. "Early-stage reciprocity in sustainable scientific collaboration," Journal of Informetrics, Elsevier, vol. 14(3).
    9. Jie Liu & Arnulf Grubler & Tieju Ma & Dieter F. Kogler, 2021. "Identifying the technological knowledge depreciation rate using patent citation data: a case study of the solar photovoltaic industry," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 93-115, January.
    10. Lu Liu & Benjamin F. Jones & Brian Uzzi & Dashun Wang, 2023. "Data, measurement and empirical methods in the science of science," Nature Human Behaviour, Nature, vol. 7(7), pages 1046-1058, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. R. Goldberg & H. Anthony & T. S. Evans, 2015. "Modelling citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1577-1604, December.
    2. João A G Moreira & Xiao Han T Zeng & Luís A Nunes Amaral, 2015. "The Distribution of the Asymptotic Number of Citations to Sets of Publications by a Researcher or from an Academic Department Are Consistent with a Discrete Lognormal Model," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-17, November.
    3. Tóth, István & Lázár, Zsolt I. & Varga, Levente & Járai-Szabó, Ferenc & Papp, István & Florian, Răzvan V. & Ercsey-Ravasz, Mária, 2021. "Mitigating ageing bias in article level metrics using citation network analysis," Journal of Informetrics, Elsevier, vol. 15(1).
    4. Lu Liu & Benjamin F. Jones & Brian Uzzi & Dashun Wang, 2023. "Data, measurement and empirical methods in the science of science," Nature Human Behaviour, Nature, vol. 7(7), pages 1046-1058, July.
    5. Cao, Xuanyu & Chen, Yan & Ray Liu, K.J., 2016. "A data analytic approach to quantifying scientific impact," Journal of Informetrics, Elsevier, vol. 10(2), pages 471-484.
    6. Parolo, Pietro Della Briotta & Pan, Raj Kumar & Ghosh, Rumi & Huberman, Bernardo A. & Kaski, Kimmo & Fortunato, Santo, 2015. "Attention decay in science," Journal of Informetrics, Elsevier, vol. 9(4), pages 734-745.
    7. B Ian Hutchins & Xin Yuan & James M Anderson & George M Santangelo, 2016. "Relative Citation Ratio (RCR): A New Metric That Uses Citation Rates to Measure Influence at the Article Level," PLOS Biology, Public Library of Science, vol. 14(9), pages 1-25, September.
    8. Lina M. Cortés & Andrés Mora-Valencia & Javier Perote, 2016. "The productivity of top researchers: a semi-nonparametric approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 891-915, November.
    9. Colavizza, Giovanni & Franceschet, Massimo, 2016. "Clustering citation histories in the Physical Review," Journal of Informetrics, Elsevier, vol. 10(4), pages 1037-1051.
    10. Anthony G. Stacey, 2021. "Ages of cited references and growth of scientific knowledge: an explication of the gamma distribution in business and management disciplines," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 619-640, January.
    11. Jianjun Sun & Chao Min & Jiang Li, 2016. "A vector for measuring obsolescence of scientific articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 745-757, May.
    12. Xiaojing Cai & Xiaozan Lyu & Ping Zhou, 2023. "The relationship between interdisciplinarity and citation impact—a novel perspective on citation accumulation," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-12, December.
    13. Clough, James R. & Evans, Tim S., 2016. "What is the dimension of citation space?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 235-247.
    14. Stegehuis, Clara & Litvak, Nelly & Waltman, Ludo, 2015. "Predicting the long-term citation impact of recent publications," Journal of Informetrics, Elsevier, vol. 9(3), pages 642-657.
    15. Michal Brzezinski, 2015. "Power laws in citation distributions: evidence from Scopus," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(1), pages 213-228, April.
    16. Onodera, Natsuo, 2016. "Properties of an index of citation durability of an article," Journal of Informetrics, Elsevier, vol. 10(4), pages 981-1004.
    17. Pan, Raj K. & Petersen, Alexander M. & Pammolli, Fabio & Fortunato, Santo, 2018. "The memory of science: Inflation, myopia, and the knowledge network," Journal of Informetrics, Elsevier, vol. 12(3), pages 656-678.
    18. Yinyu Jin & Sha Yuan & Zhou Shao & Wendy Hall & Jie Tang, 2021. "Turing Award elites revisited: patterns of productivity, collaboration, authorship and impact," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2329-2348, March.
    19. Franceschet, Massimo & Costantini, Antonio, 2011. "The first Italian research assessment exercise: A bibliometric perspective," Journal of Informetrics, Elsevier, vol. 5(2), pages 275-291.
    20. Sha Yuan & Zhou Shao & Xingxing Wei & Jie Tang & Wendy Hall & Yongli Wang & Ying Wang & Ye Wang, 2020. "Science behind AI: the evolution of trend, mobility, and collaboration," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 993-1013, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:11:y:2017:i:2:p:608-621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.