IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v107y2016i2d10.1007_s11192-016-1884-7.html
   My bibliography  Save this article

A vector for measuring obsolescence of scientific articles

Author

Listed:
  • Jianjun Sun

    (Nanjing University)

  • Chao Min

    (Nanjing University)

  • Jiang Li

    (Zhejiang University)

Abstract

Diachronous studies of obsolescence categorized articles into three general types: “flashes in the pan”, “sleeping beauties” and “normal articles”. These studies used either quartiles or averages to define thresholds on sleeping and awakening periods. However, such average- and quartile-based criteria, sometimes, are less effective in distinguishing “flashes in the pan” and “sleeping beauties” from normal articles due to the arbitrariness of the manner in which thresholds are determined. In this investigation, we propose a vector for measuring obsolescence of scientific articles as an alternative to these criteria. The obsolescence vector is designed as O = (G s, A −), with G s as a parameter affecting the shape of citation curves and A − as a parameter detecting drastic fluctuation of citation curves. We collected 50,789 articles authored by Nobel laureates during 1900–2012. Applying our criteria to this dataset, we compared the obsolescence vector with average- and quartile-based criteria. Our findings show that the proposed obsolescence vector is different from and serves as an alternative to the average- and quartile-based criteria.

Suggested Citation

  • Jianjun Sun & Chao Min & Jiang Li, 2016. "A vector for measuring obsolescence of scientific articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 745-757, May.
  • Handle: RePEc:spr:scient:v:107:y:2016:i:2:d:10.1007_s11192-016-1884-7
    DOI: 10.1007/s11192-016-1884-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-016-1884-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-016-1884-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rodrigo Costas & Thed N. van Leeuwen & Anthony F.J. van Raan, 2010. "Is scientific literature subject to a ‘Sell-By-Date’? A general methodology to analyze the ‘durability’ of scientific documents," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(2), pages 329-339, February.
    2. Hendrik P. van Dalen & K?ne Henkens, 2005. "Signals in science - On the importance of signaling in gaining attention in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 64(2), pages 209-233, August.
    3. Jiang Li & Fred Y. Ye, 2012. "The phenomenon of all-elements-sleeping-beauties in scientific literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 92(3), pages 795-799, September.
    4. Amin Mazloumian & Young-Ho Eom & Dirk Helbing & Sergi Lozano & Santo Fortunato, 2011. "How Citation Boosts Promote Scientific Paradigm Shifts and Nobel Prizes," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-6, May.
    5. Anthony F. J. van Raan, 2004. "Sleeping Beauties in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 59(3), pages 467-472, March.
    6. Aurel Avramescu, 1979. "Actuality and Obsolescence of Scientific Literature," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 30(5), pages 296-303, September.
    7. Quentin L. Burrell, 2002. "The nth-citation distribution and obsolescence," Scientometrics, Springer;Akadémiai Kiadó, vol. 53(3), pages 309-323, March.
    8. Li, Jiang & Shi, Dongbo & Zhao, Star X. & Ye, Fred Y., 2014. "A study of the “heartbeat spectra” for “sleeping beauties”," Journal of Informetrics, Elsevier, vol. 8(3), pages 493-502.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Jinqing & Bu, Yi & Lu, Wei & Huang, Yong & Hu, Jiming & Huang, Shengzhi & Zhang, Li, 2022. "Identifying keyword sleeping beauties: A perspective on the knowledge diffusion process," Journal of Informetrics, Elsevier, vol. 16(1).
    2. Jianhua Hou & Hao Li & Yang Zhang, 2023. "Altmetrics-based sleeping beauties: necessity or just a supplement?," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(10), pages 5477-5506, October.
    3. Colavizza, Giovanni & Franceschet, Massimo, 2016. "Clustering citation histories in the Physical Review," Journal of Informetrics, Elsevier, vol. 10(4), pages 1037-1051.
    4. Cristina López-Duarte & Marta M. Vidal-Suárez & Belén González-Díaz, 2019. "Cross-national distance and international business: an analysis of the most influential recent models," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 173-208, October.
    5. Meijun Liu & Xiao Hu & Jiang Li, 2018. "Knowledge flow in China’s humanities and social sciences," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(2), pages 607-626, March.
    6. Meijun Liu & Dongbo Shi & Jiang Li, 2017. "Double-edged sword of interdisciplinary knowledge flow from hard sciences to humanities and social sciences: Evidence from China," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-16, September.
    7. Mingyang Wang & Shi Li & Guangsheng Chen, 2017. "Detecting latent referential articles based on their vitality performance in the latest 2 years," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1557-1571, September.
    8. Miura, Takahiro & Asatani, Kimitaka & Sakata, Ichiro, 2023. "Revisiting the uniformity and inconsistency of slow-cited papers in science," Journal of Informetrics, Elsevier, vol. 17(1).
    9. Ratnadeep Dey & Anurag Roy & Tanmoy Chakraborty & Saptarshi Ghosh, 2017. "Sleeping beauties in Computer Science: characterization and early identification," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(3), pages 1645-1663, December.
    10. Zhichao Fang & Rodrigo Costas, 2020. "Studying the accumulation velocity of altmetric data tracked by Altmetric.com," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(2), pages 1077-1101, May.
    11. Hui Fang, 2018. "Analysing the variation tendencies of the numbers of yearly citations for sleeping beauties in science by using derivative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 1051-1070, May.
    12. Hou, Jianhua & Yang, Xiucai, 2020. "Social media-based sleeping beauties: Defining, identifying and features," Journal of Informetrics, Elsevier, vol. 14(2).
    13. You Song & Fangling Situ & Hongjun Zhu & Jinzhi Lei, 2018. "To be the Prince to wake up Sleeping Beauty: the rediscovery of the delayed recognition studies," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 9-24, October.
    14. Jianhua Hou & Xiucai Yang, 2019. "Patent sleeping beauties: evolutionary trajectories and identification methods," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(1), pages 187-215, July.
    15. Hui Fang, 2019. "A transition stage co-citation criterion for identifying the awakeners of sleeping beauty publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 307-322, October.
    16. Aurora A. C. Teixeira & Pedro Cosme Vieira & Ana Patrícia Abreu, 2017. "Sleeping Beauties and their princes in innovation studies," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 541-580, February.
    17. Jiang Li & Fred Y. Ye, 2016. "Distinguishing sleeping beauties in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(2), pages 821-828, August.
    18. Jianhua Hou & Hao Li & Yang Zhang, 2020. "Identifying the princes base on Altmetrics: An awakening mechanism of sleeping beauties from the perspective of social media," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-28, November.
    19. Onodera, Natsuo, 2016. "Properties of an index of citation durability of an article," Journal of Informetrics, Elsevier, vol. 10(4), pages 981-1004.
    20. ZhangJian Zong & XuanZhen Liu & Hui Fang, 2018. "Sleeping beauties with no prince based on the co-citation criterion," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 1841-1852, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Onodera, Natsuo, 2016. "Properties of an index of citation durability of an article," Journal of Informetrics, Elsevier, vol. 10(4), pages 981-1004.
    2. Jianhua Hou & Xiucai Yang, 2019. "Patent sleeping beauties: evolutionary trajectories and identification methods," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(1), pages 187-215, July.
    3. Jianhua Hou & Xiucai Yang & Yang Zhang, 2023. "The effect of social media knowledge cascade: an analysis of scientific papers diffusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(9), pages 5169-5195, September.
    4. Cristina López-Duarte & Marta M. Vidal-Suárez & Belén González-Díaz, 2019. "Cross-national distance and international business: an analysis of the most influential recent models," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 173-208, October.
    5. Jiang Li & Fred Y. Ye, 2016. "Distinguishing sleeping beauties in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(2), pages 821-828, August.
    6. Lachance, Christian & Larivière, Vincent, 2014. "On the citation lifecycle of papers with delayed recognition," Journal of Informetrics, Elsevier, vol. 8(4), pages 863-872.
    7. Hui Fang, 2018. "Analysing the variation tendencies of the numbers of yearly citations for sleeping beauties in science by using derivative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 1051-1070, May.
    8. Li, Jiang & Shi, Dongbo & Zhao, Star X. & Ye, Fred Y., 2014. "A study of the “heartbeat spectra” for “sleeping beauties”," Journal of Informetrics, Elsevier, vol. 8(3), pages 493-502.
    9. Hou, Jianhua & Yang, Xiucai, 2020. "Social media-based sleeping beauties: Defining, identifying and features," Journal of Informetrics, Elsevier, vol. 14(2).
    10. Jiang Li, 2014. "Citation curves of “all-elements-sleeping-beauties”: “flash in the pan” first and then “delayed recognition”," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(2), pages 595-601, August.
    11. You Song & Fangling Situ & Hongjun Zhu & Jinzhi Lei, 2018. "To be the Prince to wake up Sleeping Beauty: the rediscovery of the delayed recognition studies," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 9-24, October.
    12. Helena H. Zhang & Fred Y. Ye, 2020. "Identifying ‘associated-sleeping-beauties’ in ‘swan-groups’ based on small qualified datasets of physics and economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1525-1537, March.
    13. Zeng, Carl J. & Qi, Eric P. & Li, Simon S. & Stanley, H. Eugene & Ye, Fred Y., 2017. "Statistical characteristics of breakthrough discoveries in science using the metaphor of black and white swans," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 487(C), pages 40-46.
    14. Min, Chao & Sun, Jianjun & Pei, Lei & Ding, Ying, 2016. "Measuring delayed recognition for papers: Uneven weighted summation and total citations," Journal of Informetrics, Elsevier, vol. 10(4), pages 1153-1165.
    15. Aurora A. C. Teixeira & Pedro Cosme Vieira & Ana Patrícia Abreu, 2017. "Sleeping Beauties and their princes in innovation studies," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 541-580, February.
    16. Colavizza, Giovanni & Franceschet, Massimo, 2016. "Clustering citation histories in the Physical Review," Journal of Informetrics, Elsevier, vol. 10(4), pages 1037-1051.
    17. Lutz Bornmann & Adam Y. Ye & Fred Y. Ye, 2018. "Identifying “hot papers” and papers with “delayed recognition” in large-scale datasets by using dynamically normalized citation impact scores," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 655-674, August.
    18. ZhangJian Zong & XuanZhen Liu & Hui Fang, 2018. "Sleeping beauties with no prince based on the co-citation criterion," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 1841-1852, December.
    19. Costas, Rodrigo & van Leeuwen, Thed N. & van Raan, Anthony F.J., 2013. "Effects of the durability of scientific literature at the group level: Case study of chemistry research groups in the Netherlands," Research Policy, Elsevier, vol. 42(4), pages 886-894.
    20. Rodrigo Costas & Thed N. Leeuwen & Anthony F. J. Raan, 2011. "The “Mendel syndrome” in science: durability of scientific literature and its effects on bibliometric analysis of individual scientists," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 177-205, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:107:y:2016:i:2:d:10.1007_s11192-016-1884-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.