IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v122y2020i3d10.1007_s11192-019-03336-0.html
   My bibliography  Save this article

A review of citation recommendation: from textual content to enriched context

Author

Listed:
  • Shutian Ma

    (Nanjing University of Science and Technology)

  • Chengzhi Zhang

    (Nanjing University of Science and Technology)

  • Xiaozhong Liu

    (Indiana University Bloomington)

Abstract

Citation recommendation systems play an important role to alleviate the dilemma that scholar users spend a lot of time and experiences for literature survey. With the burgeoning computational models and open data movement, scientific repository can provide more evidence in support of recommendation. On the one hand, recommenders are applying better algorithms to understand the text of user queries and candidate citations. On the other hand, more types of data such as citation network and co-author relationship are aggregated to enrich the citation contextual information. The available data used for recommendation has been extended from textual content to enriched context. This review is conducted to identify the information and methods used for recommendations recently. We begin by introducing definitions of the task, recommending factors along with the corresponding problems and some application platforms. Then, we classify existing recommenders according to user query types and review representative methods for each type. We also elaborate on different strategies applied in three main stages of citation recommendation. Finally, a few open issues for future investigations are proposed.

Suggested Citation

  • Shutian Ma & Chengzhi Zhang & Xiaozhong Liu, 2020. "A review of citation recommendation: from textual content to enriched context," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1445-1472, March.
  • Handle: RePEc:spr:scient:v:122:y:2020:i:3:d:10.1007_s11192-019-03336-0
    DOI: 10.1007/s11192-019-03336-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-019-03336-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-019-03336-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martin Rosvall & Carl T Bergstrom, 2011. "Multilevel Compression of Random Walks on Networks Reveals Hierarchical Organization in Large Integrated Systems," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-10, April.
    2. Lutz Bornmann & Rüdiger Mutz, 2015. "Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(11), pages 2215-2222, November.
    3. Yin, Yian & Wang, Dashun, 2017. "The time dimension of science: Connecting the past to the future," Journal of Informetrics, Elsevier, vol. 11(2), pages 608-621.
    4. Meen Chul Kim & Chaomei Chen, 2015. "A scientometric review of emerging trends and new developments in recommendation systems," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(1), pages 239-263, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chaker Jebari & Enrique Herrera-Viedma & Manuel Jesus Cobo, 2023. "Context-aware citation recommendation of scientific papers: comparative study, gaps and trends," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4243-4268, August.
    2. Chaker Jebari & Enrique Herrera-Viedma & Manuel Jesus Cobo, 2021. "The use of citation context to detect the evolution of research topics: a large-scale analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 2971-2989, April.
    3. Shutian Ma & Heng Zhang & Chengzhi Zhang & Xiaozhong Liu, 2021. "Chronological citation recommendation with time preference," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 2991-3010, April.
    4. Orlando Fonseca Guilarte & Simone Diniz Junqueira Barbosa & Sinesio Pesco, 2021. "RelPath: an interactive tool to visualize branches of studies and quantify the expertise of authors by citation paths," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(6), pages 4871-4897, June.
    5. Yadav, Pratyush & Pervin, Nargis, 2022. "Towards efficient navigation in digital libraries: Leveraging popularity, semantics and communities to recommend scholarly articles," Journal of Informetrics, Elsevier, vol. 16(4).
    6. Zafar Ali & Irfan Ullah & Amin Khan & Asim Ullah Jan & Khan Muhammad, 2021. "An overview and evaluation of citation recommendation models," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4083-4119, May.
    7. Yongquan Chen & Ying Jiang & Haiyi Liu, 2023. "Analysis Method of App Software User Experience Based on Multisource Information Fusion," International Journal on Semantic Web and Information Systems (IJSWIS), IGI Global, vol. 19(1), pages 1-22, January.
    8. Trappey, Amy & Trappey, Charles V. & Hsieh, Alex, 2021. "An intelligent patent recommender adopting machine learning approach for natural language processing: A case study for smart machinery technology mining," Technological Forecasting and Social Change, Elsevier, vol. 164(C).
    9. Hei-Chia Wang & Jen-Wei Cheng & Che-Tsung Yang, 2022. "SentCite: a sentence-level citation recommender based on the salient similarity among multiple segments," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2521-2546, May.
    10. Pengcheng Li & Wei Lu & Qikai Cheng, 2022. "Generating a related work section for scientific papers: an optimized approach with adopting problem and method information," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(8), pages 4397-4417, August.
    11. Rodrigo Nogueira & Zhiying Jiang & Kyunghyun Cho & Jimmy Lin, 2020. "Navigation-based candidate expansion and pretrained language models for citation recommendation," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 3001-3016, December.
    12. Sehrish Iqbal & Saeed-Ul Hassan & Naif Radi Aljohani & Salem Alelyani & Raheel Nawaz & Lutz Bornmann, 2021. "A decade of in-text citation analysis based on natural language processing and machine learning techniques: an overview of empirical studies," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6551-6599, August.
    13. Naif Radi Aljohani & Ayman Fayoumi & Saeed-Ul Hassan, 2021. "An in-text citation classification predictive model for a scholarly search system," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5509-5529, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oleh Pasko & Mykola Hordiyenko & Fuli Chen & Yarmila Tkal & Yulia Abraham, 2021. "Mapping Global Research on International Financial Reporting Standards: A Scientometric Review," International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 12(3), pages 116-134, May.
    2. Mohammad Rabiei & Seyyed-Mahdi Hosseini-Motlagh & Abdorrahman Haeri, 2017. "Using text mining techniques for identifying research gaps and priorities: a case study of the environmental science in Iran," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 815-842, February.
    3. Ramona Weinrich, 2019. "Opportunities for the Adoption of Health-Based Sustainable Dietary Patterns: A Review on Consumer Research of Meat Substitutes," Sustainability, MDPI, vol. 11(15), pages 1-15, July.
    4. Piers Steel & Sjoerd Beugelsdijk & Herman Aguinis, 2021. "The anatomy of an award-winning meta-analysis: Recommendations for authors, reviewers, and readers of meta-analytic reviews," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 52(1), pages 23-44, February.
    5. Dunaiski, Marcel & Geldenhuys, Jaco & Visser, Willem, 2019. "On the interplay between normalisation, bias, and performance of paper impact metrics," Journal of Informetrics, Elsevier, vol. 13(1), pages 270-290.
    6. Augusteijn, Hilde Elisabeth Maria & van Aert, Robbie Cornelis Maria & van Assen, Marcel A. L. M., 2021. "Posterior Probabilities of Effect Sizes and Heterogeneity in Meta-Analysis: An Intuitive Approach of Dealing with Publication Bias," OSF Preprints avkgj, Center for Open Science.
    7. Chakraborty, Abhijit & Krichene, Hazem & Inoue, Hiroyasu & Fujiwara, Yoshi, 2019. "Characterization of the community structure in a large-scale production network in Japan," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 210-221.
    8. Ruhua Huang & Yuting Huang & Fan Qi & Leyi Shi & Baiyang Li & Wei Yu, 2022. "Exploring the characteristics of special issues: distribution, topicality, and citation impact," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5233-5256, September.
    9. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    10. Neal R. Haddaway & Max W. Callaghan & Alexandra M. Collins & William F. Lamb & Jan C. Minx & James Thomas & Denny John, 2020. "On the use of computer‐assistance to facilitate systematic mapping," Campbell Systematic Reviews, John Wiley & Sons, vol. 16(4), December.
    11. Abhijit Chakraborty & Yuichi Kichikawa & Takashi Iino & Hiroshi Iyetomi & Hiroyasu Inoue & Yoshi Fujiwara & Hideaki Aoyama, 2018. "Hierarchical communities in the walnut structure of the Japanese production network," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-25, August.
    12. Wu, Lingfei & Kittur, Aniket & Youn, Hyejin & Milojević, Staša & Leahey, Erin & Fiore, Stephen M. & Ahn, Yong-Yeol, 2022. "Metrics and mechanisms: Measuring the unmeasurable in the science of science," Journal of Informetrics, Elsevier, vol. 16(2).
    13. Vincent Raoult, 2020. "How Many Papers Should Scientists Be Reviewing? An Analysis Using Verified Peer Review Reports," Publications, MDPI, vol. 8(1), pages 1-9, January.
    14. Ludo Waltman & Nees Jan Eck, 2012. "A new methodology for constructing a publication-level classification system of science," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(12), pages 2378-2392, December.
    15. Carlos Olmeda-Gómez & Maria-Antonia Ovalle-Perandones & Antonio Perianes-Rodríguez, 2017. "Co-word analysis and thematic landscapes in Spanish information science literature, 1985–2014," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 195-217, October.
    16. Eloy López-Meneses & Esteban Vázquez-Cano & Mariana-Daniela González-Zamar & Emilio Abad-Segura, 2020. "Socioeconomic Effects in Cyberbullying: Global Research Trends in the Educational Context," IJERPH, MDPI, vol. 17(12), pages 1-31, June.
    17. Jinseok Kim & Jinmo Kim & Jason Owen-Smith, 2019. "Generating automatically labeled data for author name disambiguation: an iterative clustering method," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 253-280, January.
    18. Yu, Dejian & Xu, Chao, 2017. "Mapping research on carbon emissions trading: a co-citation analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1314-1322.
    19. Hsia-Ching Chang, 2016. "The Synergy of Scientometric Analysis and Knowledge Mapping with Topic Models: Modelling the Development Trajectories of Information Security and Cyber-Security Research," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 15(04), pages 1-33, December.
    20. Rosa Rodriguez-Sánchez & J. A. García & J. Fdez-Valdivia, 2014. "Evolutionary games between subject categories," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 869-888, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:122:y:2020:i:3:d:10.1007_s11192-019-03336-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.