IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v129y2024i3d10.1007_s11192-024-04933-4.html
   My bibliography  Save this article

A scientific paper recommendation method using the time decay heterogeneous graph

Author

Listed:
  • Zhenye Huang

    (South China University of Technology)

  • Deyou Tang

    (South China University of Technology)

  • Rong Zhao

    (South China University of Technology)

  • Wenjing Rao

    (South China University of Technology)

Abstract

Finding appropriate and relevant papers about a project in various digital libraries with millions of scientific papers is challenging for researchers, resulting in a research innovation gap because of incomplete literature retrieval. A query-oriented paper recommendation (QPR) is a feasible way to improve the efficiency of literature retrieval in scientific research, and the graph-based method is one of the best solutions for QPR. However, current graph-based QPR methods still have the defeats of low precision and over-weighting. This paper proposes a query-oriented paper recommendation method using the Time Decay Heterogeneous Graph (TDHG) to improve the recommendation quality. TDHG is a four-layer heterogeneous graph combing the time decay characteristics in academic literature. We also used author rank to highlight contributions, the Author-Topic model to extend relations in heterogeneous graphs, and the Random Walk with Restart algorithm to rank papers. We designed three time-decay vectors and compared their impact on overcoming over-weighting caused by applying Random Walk with Restart algorithm to the original heterogeneous graph. Our experiments show linear time-decay vectors cannot balance the importance and timeliness of academic papers, while log time-decay vectors and sqrt time-decay vectors effectively solve the over-weighting problem. The experimental results show that the time-decay vector brings about an 11% and 8% improvement in Mean Average Precision (MAP) on the AAN and DBLP datasets, respectively.

Suggested Citation

  • Zhenye Huang & Deyou Tang & Rong Zhao & Wenjing Rao, 2024. "A scientific paper recommendation method using the time decay heterogeneous graph," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(3), pages 1589-1613, March.
  • Handle: RePEc:spr:scient:v:129:y:2024:i:3:d:10.1007_s11192-024-04933-4
    DOI: 10.1007/s11192-024-04933-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-024-04933-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-024-04933-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chanathip Pornprasit & Xin Liu & Pattararat Kiattipadungkul & Natthawut Kertkeidkachorn & Kyoung-Sook Kim & Thanapon Noraset & Saeed-Ul Hassan & Suppawong Tuarob, 2022. "Enhancing citation recommendation using citation network embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(1), pages 233-264, January.
    2. Zafar Ali & Irfan Ullah & Amin Khan & Asim Ullah Jan & Khan Muhammad, 2021. "An overview and evaluation of citation recommendation models," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4083-4119, May.
    3. Zafar Ali & Irfan Ullah & Amin Ul Haq & Asim Ullah Jan & Khan Muhammad, 2021. "Correction to: An overview and evaluation of citation recommendation models," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(10), pages 8771-8771, October.
    4. Tianshuang Qiu & Chuanming Yu & Yunci Zhong & Lu An & Gang Li, 2021. "A scientific citation recommendation model integrating network and text representations," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(11), pages 9199-9221, November.
    5. Shutian Ma & Chengzhi Zhang & Xiaozhong Liu, 2020. "A review of citation recommendation: from textual content to enriched context," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1445-1472, March.
    6. Zafar Ali & Guilin Qi & Pavlos Kefalas & Shah Khusro & Inayat Khan & Khan Muhammad, 2022. "SPR-SMN: scientific paper recommendation employing SPECTER with memory network," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6763-6785, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yonghe Lu & Meilu Yuan & Jiaxin Liu & Minghong Chen, 2023. "Research on semantic representation and citation recommendation of scientific papers with multiple semantics fusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(2), pages 1367-1393, February.
    2. Shicheng Tan & Tao Zhang & Shu Zhao & Yanping Zhang, 2023. "Self-supervised scientific document recommendation based on contrastive learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(9), pages 5027-5049, September.
    3. Zafar Ali & Guilin Qi & Pavlos Kefalas & Shah Khusro & Inayat Khan & Khan Muhammad, 2022. "SPR-SMN: scientific paper recommendation employing SPECTER with memory network," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6763-6785, November.
    4. Chien-chih Huang & Kuang-hua Chen, 2024. "RefCit2vec: embedding models considering references and citations for measuring document similarity," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(8), pages 4669-4693, August.
    5. Xiaojuan Zhang & Shuqi Song & Yuping Xiong, 2024. "Personalized global citation recommendation with diversification awareness," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 3625-3657, July.
    6. Chaker Jebari & Enrique Herrera-Viedma & Manuel Jesus Cobo, 2023. "Context-aware citation recommendation of scientific papers: comparative study, gaps and trends," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4243-4268, August.
    7. Wei Cheng & Dejun Zheng & Shaoxiong Fu & Jingfeng Cui, 2024. "Closer in time and higher correlation: disclosing the relationship between citation similarity and citation interval," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 4495-4512, July.
    8. Nimbeshaho Thierry & Bing-Kun Bao & Zafar Ali, 2023. "RAR-SB: research article recommendation using SciBERT with BiGRU," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(12), pages 6427-6448, December.
    9. Naif Radi Aljohani & Ayman Fayoumi & Saeed-Ul Hassan, 2021. "An in-text citation classification predictive model for a scholarly search system," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5509-5529, July.
    10. Chi Jiang & Xiao Ma & Jiangfeng Zeng & Yin Zhang & Tingting Yang & Qiumiao Deng, 2023. "TAPRec: time-aware paper recommendation via the modeling of researchers’ dynamic preferences," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(6), pages 3453-3471, June.
    11. Trappey, Amy & Trappey, Charles V. & Hsieh, Alex, 2021. "An intelligent patent recommender adopting machine learning approach for natural language processing: A case study for smart machinery technology mining," Technological Forecasting and Social Change, Elsevier, vol. 164(C).
    12. Shutian Ma & Heng Zhang & Chengzhi Zhang & Xiaozhong Liu, 2021. "Chronological citation recommendation with time preference," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 2991-3010, April.
    13. Xu, Shuo & Ma, Xinyi & Wang, Hong & An, Xin & Li, Ling, 2024. "A recommendation approach of scientific non-patent literature on the basis of heterogeneous information network," Journal of Informetrics, Elsevier, vol. 18(4).
    14. Jiaying Liu & Jun Zhang, 2025. "Publication recommendation in incomplete networks based on graph learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 130(2), pages 565-591, February.
    15. Esra Gündoğan & Mehmet Kaya & Ali Daud, 2023. "Deep learning for journal recommendation system of research papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(1), pages 461-481, January.
    16. Zafar Ali & Irfan Ullah & Amin Khan & Asim Ullah Jan & Khan Muhammad, 2021. "An overview and evaluation of citation recommendation models," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4083-4119, May.
    17. Yadav, Pratyush & Pervin, Nargis, 2022. "Towards efficient navigation in digital libraries: Leveraging popularity, semantics and communities to recommend scholarly articles," Journal of Informetrics, Elsevier, vol. 16(4).
    18. Rodrigo Nogueira & Zhiying Jiang & Kyunghyun Cho & Jimmy Lin, 2020. "Navigation-based candidate expansion and pretrained language models for citation recommendation," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 3001-3016, December.
    19. Orlando Fonseca Guilarte & Simone Diniz Junqueira Barbosa & Sinesio Pesco, 2021. "RelPath: an interactive tool to visualize branches of studies and quantify the expertise of authors by citation paths," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(6), pages 4871-4897, June.
    20. Chaker Jebari & Enrique Herrera-Viedma & Manuel Jesus Cobo, 2021. "The use of citation context to detect the evolution of research topics: a large-scale analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 2971-2989, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:129:y:2024:i:3:d:10.1007_s11192-024-04933-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.