IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v127y2022i1d10.1007_s11192-021-04196-3.html
   My bibliography  Save this article

Enhancing citation recommendation using citation network embedding

Author

Listed:
  • Chanathip Pornprasit

    (Mahidol University)

  • Xin Liu

    (National Institute of Advanced Industrial Science and Technology)

  • Pattararat Kiattipadungkul

    (Mahidol University)

  • Natthawut Kertkeidkachorn

    (National Institute of Advanced Industrial Science and Technology)

  • Kyoung-Sook Kim

    (National Institute of Advanced Industrial Science and Technology)

  • Thanapon Noraset

    (Mahidol University)

  • Saeed-Ul Hassan

    (Manchester Metropolitan University)

  • Suppawong Tuarob

    (Mahidol University)

Abstract

Automatic recommendation of citations has been a focal point of research in scholarly digital libraries. Many graph-based citation recommendation algorithms have been proposed; however, most of them utilize local citation behavior from the citation network that results in recommending papers in the same proximity as the query article. In this paper, we propose to capture the global citation behavior in the citation network and use it to enhance the citation recommendation performance. Specifically, we develop a novel citation network embedding algorithm, ConvCN, to encode the citation relationship among papers. We then propose to enhance existing graph-based citation recommendation algorithms by incorporating ConvCN to improve the recommendation efficacy. ConvCN has been shown to improve the citation recommendation performance by 44.86% and 34.87% on average in terms of Bpref and F-measure@20, respectively. The findings from this research not only confirm that global citation behavior could be additionally useful for improving the performance of traditional citation recommendation algorithms but also shed light on the possibility to adapt the proposed ConvCN algorithm for other recommendation tasks that rely on graph-like information such as items recommendation in social networks and people recommendation in referral networks.

Suggested Citation

  • Chanathip Pornprasit & Xin Liu & Pattararat Kiattipadungkul & Natthawut Kertkeidkachorn & Kyoung-Sook Kim & Thanapon Noraset & Saeed-Ul Hassan & Suppawong Tuarob, 2022. "Enhancing citation recommendation using citation network embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(1), pages 233-264, January.
  • Handle: RePEc:spr:scient:v:127:y:2022:i:1:d:10.1007_s11192-021-04196-3
    DOI: 10.1007/s11192-021-04196-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-021-04196-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-021-04196-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khalid Haruna & Maizatul Akmar Ismail & Atika Qazi & Habeebah Adamu Kakudi & Mohammed Hassan & Sanah Abdullahi Muaz & Haruna Chiroma, 2020. "Research paper recommender system based on public contextual metadata," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 101-114, October.
    2. Zehra Taşkın & Umut Al, 2018. "A content-based citation analysis study based on text categorization," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(1), pages 335-357, January.
    3. Vibhav Singh & Surabhi Verma & Sushil S. Chaurasia, 2020. "Mapping the themes and intellectual structure of corporate university: co-citation and cluster analyses," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1275-1302, March.
    4. Chanwoo Jeong & Sion Jang & Eunjeong Park & Sungchul Choi, 2020. "A context-aware citation recommendation model with BERT and graph convolutional networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 1907-1922, September.
    5. Xi Chen & Huan-jing Zhao & Shu Zhao & Jie Chen & Yan-ping Zhang, 2019. "Citation recommendation based on citation tendency," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 937-956, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiang Li & Chengli Zhao & Zhaolong Hu & Caixia Yu & Xiaojun Duan, 2022. "Revealing the character of journals in higher-order citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6315-6338, November.
    2. Shicheng Tan & Tao Zhang & Shu Zhao & Yanping Zhang, 2023. "Self-supervised scientific document recommendation based on contrastive learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(9), pages 5027-5049, September.
    3. Yonghe Lu & Meilu Yuan & Jiaxin Liu & Minghong Chen, 2023. "Research on semantic representation and citation recommendation of scientific papers with multiple semantics fusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(2), pages 1367-1393, February.
    4. Orzechowski, Kamil P. & Mrowinski, Maciej J. & Fronczak, Agata & Fronczak, Piotr, 2023. "Asymmetry of social interactions and its role in link predictability: The case of coauthorship networks," Journal of Informetrics, Elsevier, vol. 17(2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jialiang Lin & Yao Yu & Jiaxin Song & Xiaodong Shi, 2022. "Detecting and analyzing missing citations to published scientific entities," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2395-2412, May.
    2. Yonghe Lu & Meilu Yuan & Jiaxin Liu & Minghong Chen, 2023. "Research on semantic representation and citation recommendation of scientific papers with multiple semantics fusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(2), pages 1367-1393, February.
    3. Tianshuang Qiu & Chuanming Yu & Yunci Zhong & Lu An & Gang Li, 2021. "A scientific citation recommendation model integrating network and text representations," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(11), pages 9199-9221, November.
    4. Chaker Jebari & Enrique Herrera-Viedma & Manuel Jesus Cobo, 2023. "Context-aware citation recommendation of scientific papers: comparative study, gaps and trends," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4243-4268, August.
    5. Lu Huang & Xiang Chen & Yi Zhang & Changtian Wang & Xiaoli Cao & Jiarun Liu, 2022. "Identification of topic evolution: network analytics with piecewise linear representation and word embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5353-5383, September.
    6. Mingyang Wang & Jiaqi Zhang & Shijia Jiao & Xiangrong Zhang & Na Zhu & Guangsheng Chen, 2020. "Important citation identification by exploiting the syntactic and contextual information of citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2109-2129, December.
    7. Antonina Dattolo & Marco Corbatto, 2022. "Assisting researchers in bibliographic tasks: A new usable, real‐time tool for analyzing bibliographies," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(6), pages 757-776, June.
    8. Dongqing Lyu & Xuanmin Ruan & Juan Xie & Ying Cheng, 2021. "The classification of citing motivations: a meta-synthesis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3243-3264, April.
    9. Diego Kozlowski & Jennifer Dusdal & Jun Pang & Andreas Zilian, 2021. "Semantic and relational spaces in science of science: deep learning models for article vectorisation," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5881-5910, July.
    10. Verma, Surabhi & Gustafsson, Anders, 2020. "Investigating the emerging COVID-19 research trends in the field of business and management: A bibliometric analysis approach," Journal of Business Research, Elsevier, vol. 118(C), pages 253-261.
    11. Khalid Haruna & Maizatul Akmar Ismail & Atika Qazi & Habeebah Adamu Kakudi & Mohammed Hassan & Sanah Abdullahi Muaz & Haruna Chiroma, 2020. "Research paper recommender system based on public contextual metadata," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 101-114, October.
    12. Choi, Seokkyu & Lee, Hyeonju & Park, Eunjeong & Choi, Sungchul, 2022. "Deep learning for patent landscaping using transformer and graph embedding," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    13. Heng Huang & Donghua Zhu & Xuefeng Wang, 2022. "Evaluating scientific impact of publications: combining citation polarity and purpose," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5257-5281, September.
    14. Bettina Minder & Patricia Wolf & Matthias Baldauf & Surabhi Verma, 2023. "Voice assistants in private households: a conceptual framework for future research in an interdisciplinary field," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-18, December.
    15. Khlystova, Olena & Kalyuzhnova, Yelena & Belitski, Maksim, 2022. "The impact of the COVID-19 pandemic on the creative industries: A literature review and future research agenda," Journal of Business Research, Elsevier, vol. 139(C), pages 1192-1210.
    16. Kai Nishikawa, 2023. "How and why are citations between disciplines made? A citation context analysis focusing on natural sciences and social sciences and humanities," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(5), pages 2975-2997, May.
    17. Hei-Chia Wang & Jen-Wei Cheng & Che-Tsung Yang, 2022. "SentCite: a sentence-level citation recommender based on the salient similarity among multiple segments," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2521-2546, May.
    18. Alexander Vasyaev, 2023. "Limiting University Graduates’ Access to legal representation as a Problem of Modern Legal Education," Public Organization Review, Springer, vol. 23(1), pages 43-58, March.
    19. Nayak, Bishwajit & Bhattacharyya, Som Sekhar & Krishnamoorthy, Bala, 2022. "Exploring the black box of competitive advantage – An integrated bibliometric and chronological literature review approach," Journal of Business Research, Elsevier, vol. 139(C), pages 964-982.
    20. Wang, Shiyun & Mao, Jin & Lu, Kun & Cao, Yujie & Li, Gang, 2021. "Understanding interdisciplinary knowledge integration through citance analysis: A case study on eHealth," Journal of Informetrics, Elsevier, vol. 15(4).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:127:y:2022:i:1:d:10.1007_s11192-021-04196-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.