IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v175y2022ics0040162521008441.html
   My bibliography  Save this article

Deep learning for patent landscaping using transformer and graph embedding

Author

Listed:
  • Choi, Seokkyu
  • Lee, Hyeonju
  • Park, Eunjeong
  • Choi, Sungchul

Abstract

Patent landscaping is used to search for related patents during research and development projects. Patent landscaping is a crucial task required during the early stages of an R & D project to avoid the risk of patent infringement and to follow current trends in technology. The first task of patent landscaping is to extract the target patent for analysis from a patent database. Because patent classification for patent landscaping requires advanced human resources and can be tedious, the demand for automated patent classification has gradually increased. However, a shortage of well-defined benchmark datasets and comparable models makes it difficult to find related research studies. This paper proposes an automated patent classification model for patent landscaping based on transformer and graph embedding, both of which are drawn from deep learning. The proposed model uses a transformer architecture to derive text embedding from patent abstracts and uses a graph neural network to derive graph embedding from classification code co-occurrence information and concatenates them. Furthermore, we introduce four benchmark datasets to compare related research studies on patent landscaping. The obtained results showed prominent performance that was actually applicable to our dataset and comparable to the model using BERT, which has recently shown the best performance.

Suggested Citation

  • Choi, Seokkyu & Lee, Hyeonju & Park, Eunjeong & Choi, Sungchul, 2022. "Deep learning for patent landscaping using transformer and graph embedding," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
  • Handle: RePEc:eee:tefoso:v:175:y:2022:i:c:s0040162521008441
    DOI: 10.1016/j.techfore.2021.121413
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162521008441
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2021.121413?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christopher L. Benson & Christopher L. Magee, 2015. "Technology structural implications from the extension of a patent search method," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 1965-1985, March.
    2. Suominen, Arho & Toivanen, Hannes & Seppänen, Marko, 2017. "Firms' knowledge profiles: Mapping patent data with unsupervised learning," Technological Forecasting and Social Change, Elsevier, vol. 115(C), pages 131-142.
    3. Duen‐Ren Liu & Meng‐Jung Shih, 2011. "Hybrid‐patent classification based on patent‐network analysis," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(2), pages 246-256, February.
    4. Duen-Ren Liu & Meng-Jung Shih, 2011. "Hybrid-patent classification based on patent-network analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(2), pages 246-256, February.
    5. Yang, Yun Yun & Akers, Lucy & Yang, Cynthia Barcelon & Klose, Thomas & Pavlek, Shelley, 2010. "Enhancing patent landscape analysis with visualization output," World Patent Information, Elsevier, vol. 32(3), pages 203-220, September.
    6. Sangsung Park & Sunghae Jun, 2017. "Technology Analysis of Global Smart Light Emitting Diode (LED) Development Using Patent Data," Sustainability, MDPI, vol. 9(8), pages 1-15, August.
    7. Park, Youngjin & Yoon, Janghyeok, 2017. "Application technology opportunity discovery from technology portfolios: Use of patent classification and collaborative filtering," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 170-183.
    8. Shaobo Li & Jie Hu & Yuxin Cui & Jianjun Hu, 2018. "DeepPatent: patent classification with convolutional neural networks and word embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 721-744, November.
    9. Zhihong Cui & Xiangwei Zheng & Xuexiao Shao & Lizhen Cui, 2018. "Automatic Sleep Stage Classification Based on Convolutional Neural Network and Fine-Grained Segments," Complexity, Hindawi, vol. 2018, pages 1-13, October.
    10. Jaeyoung Kim & Janghyeok Yoon & Eunjeong Park & Sungchul Choi, 2020. "Patent document clustering with deep embeddings," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(2), pages 563-577, May.
    11. Guan-Can Yang & Gang Li & Chun-Ya Li & Yun-Hua Zhao & Jing Zhang & Tong Liu & Dar-Zen Chen & Mu-Hsuan Huang, 2015. "Using the comprehensive patent citation network (CPC) to evaluate patent value," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1319-1346, December.
    12. Hei Chia Wang & Yung Chang Chi & Ping Lun Hsin, 2018. "Constructing Patent Maps Using Text Mining to Sustainably Detect Potential Technological Opportunities," Sustainability, MDPI, vol. 10(10), pages 1-18, October.
    13. Bowen Yan & Jianxi Luo, 2017. "Measuring technological distance for patent mapping," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(2), pages 423-437, February.
    14. Zhang, Yi & Shang, Lining & Huang, Lu & Porter, Alan L. & Zhang, Guangquan & Lu, Jie & Zhu, Donghua, 2016. "A hybrid similarity measure method for patent portfolio analysis," Journal of Informetrics, Elsevier, vol. 10(4), pages 1108-1130.
    15. Chanwoo Jeong & Sion Jang & Eunjeong Park & Sungchul Choi, 2020. "A context-aware citation recommendation model with BERT and graph convolutional networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 1907-1922, September.
    16. Loet Leydesdorff & Dieter Franz Kogler & Bowen Yan, 2017. "Mapping patent classifications: portfolio and statistical analysis, and the comparison of strengths and weaknesses," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1573-1591, September.
    17. Juan Carlos Gomez, 2019. "Analysis of the effect of data properties in automated patent classification," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1239-1268, December.
    18. Chen, Lixin, 2017. "Do patent citations indicate knowledge linkage? The evidence from text similarities between patents and their citations," Journal of Informetrics, Elsevier, vol. 11(1), pages 63-79.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bekamiri, Hamid & Hain, Daniel S. & Jurowetzki, Roman, 2024. "PatentSBERTa: A deep NLP based hybrid model for patent distance and classification using augmented SBERT," Technological Forecasting and Social Change, Elsevier, vol. 206(C).
    2. Yogesh K. Dwivedi & A. Sharma & Nripendra P. Rana & M. Giannakis & P. Goel & Vincent Dutot, 2023. "Evolution of Artificial Intelligence Research in Technological Forecasting and Social Change: Research Topics, Trends, and Future Directions," Post-Print hal-04292607, HAL.
    3. Kraus, Sascha & Kumar, Satish & Lim, Weng Marc & Kaur, Jaspreet & Sharma, Anuj & Schiavone, Francesco, 2023. "From moon landing to metaverse: Tracing the evolution of Technological Forecasting and Social Change," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    4. Heikkilä, Jussi T.S. & Peltoniemi, Mirva, 2023. "The changing work of IPR attorneys: 30 years of institutional transitions," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    5. Zhai, Dongsheng & Zhai, Liang & Li, Mengyang & He, Xijun & Xu, Shuo & Wang, Feifei, 2022. "Patent representation learning with a novel design of patent ontology: Case study on PEM patents," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    6. Puccetti, Giovanni & Giordano, Vito & Spada, Irene & Chiarello, Filippo & Fantoni, Gualtiero, 2023. "Technology identification from patent texts: A novel named entity recognition method," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    7. Perez-Castro, A. & Martínez-Torres, M.R. & Toral, S.L., 2023. "Efficiency of automatic text generators for online review content generation," Technological Forecasting and Social Change, Elsevier, vol. 189(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hain, Daniel S. & Jurowetzki, Roman & Buchmann, Tobias & Wolf, Patrick, 2022. "A text-embedding-based approach to measuring patent-to-patent technological similarity," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    2. Jaewoong Choi & Jiho Lee & Janghyeok Yoon & Sion Jang & Jaeyoung Kim & Sungchul Choi, 2022. "A two-stage deep learning-based system for patent citation recommendation," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6615-6636, November.
    3. Stefano Basilico & Holger Graf, 2023. "Bridging technologies in the regional knowledge space: measurement and evolution," Journal of Evolutionary Economics, Springer, vol. 33(4), pages 1085-1124, September.
    4. Wu, Yingwen & Ji, Yangjian, 2023. "Identifying firm-specific technology opportunities from the perspective of competitors by using association rule mining," Journal of Informetrics, Elsevier, vol. 17(2).
    5. Jeon, Eunji & Yoon, Naeun & Sohn, So Young, 2023. "Exploring new digital therapeutics technologies for psychiatric disorders using BERTopic and PatentSBERTa," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    6. Arousha Haghighian Roudsari & Jafar Afshar & Wookey Lee & Suan Lee, 2022. "PatentNet: multi-label classification of patent documents using deep learning based language understanding," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(1), pages 207-231, January.
    7. Seunghyun Oh & Jaewoong Choi & Namuk Ko & Janghyeok Yoon, 2020. "Predicting product development directions for new product planning using patent classification-based link prediction," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 1833-1876, December.
    8. Dalziel, Margaret & Basir, Nada, 2024. "The technological imprinting of educational experiences on student startups," Research Policy, Elsevier, vol. 53(2).
    9. Nomaler, Önder & Verspagen, Bart, 2021. "Patent landscaping using 'green' technological trajectories," MERIT Working Papers 2021-005, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    10. Ascione, Grazia Sveva, 2023. "Technological diversity to address complex challenges: the contribution of American universities to sdgs," MPRA Paper 119452, University Library of Munich, Germany.
    11. Tadeusz A. Grzeszczyk & Michal K. Grzeszczyk, 2021. "Improving the Discovery of Technological Opportunities Using Patent Classification Based on Explainable Neural Networks," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 402-409.
    12. Puccetti, Giovanni & Giordano, Vito & Spada, Irene & Chiarello, Filippo & Fantoni, Gualtiero, 2023. "Technology identification from patent texts: A novel named entity recognition method," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    13. Wei Du & Yibo Wang & Wei Xu & Jian Ma, 2021. "A personalized recommendation system for high-quality patent trading by leveraging hybrid patent analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9369-9391, December.
    14. Jee, Su Jung & Srivastav, Sugandha, 2024. "Knowledge spillovers between clean and dirty technologies: Evidence from the patent citation network," Ecological Economics, Elsevier, vol. 224(C).
    15. Kamal Sanguri & Atanu Bhuyan & Sabyasachi Patra, 2020. "A semantic similarity adjusted document co-citation analysis: a case of tourism supply chain," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 233-269, October.
    16. Mun, Changbae & Yoon, Sejun & Raghavan, Nagarajan & Hwang, Dongwook & Basnet, Subarna & Park, Hyunseok, 2021. "Function score-based technological trend analysis," Technovation, Elsevier, vol. 101(C).
    17. Jungpyo Lee & So Young Sohn, 2021. "Recommendation system for technology convergence opportunities based on self-supervised representation learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 1-25, January.
    18. Bekamiri, Hamid & Hain, Daniel S. & Jurowetzki, Roman, 2024. "PatentSBERTa: A deep NLP based hybrid model for patent distance and classification using augmented SBERT," Technological Forecasting and Social Change, Elsevier, vol. 206(C).
    19. Xuan Shi & Lingfei Cai & Hongfang Song, 2019. "Discovering Potential Technology Opportunities for Fuel Cell Vehicle Firms: A Multi-Level Patent Portfolio-Based Approach," Sustainability, MDPI, vol. 11(22), pages 1-22, November.
    20. Jie Chen & Jialin Chen & Shu Zhao & Yanping Zhang & Jie Tang, 2020. "Exploiting word embedding for heterogeneous topic model towards patent recommendation," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2091-2108, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:175:y:2022:i:c:s0040162521008441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.