IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v19y2025i1s1751157724001287.html
   My bibliography  Save this article

Leveraging patent classification based on deep learning: The case study on smart cities and industrial Internet of Things

Author

Listed:
  • Li, Munan
  • Wang, Liang

Abstract

With the trends of technology convergence and technology interdisciplinarity, technology-field (TF) resolution and classification of patents have gradually been challenged. Whether for patent applicants or for patent examiners, more precisely labeling the TF for a certain patent is important for technological searches. However, determining the TF of a patent may be difficult and may even involve the strategic behavior of patenting, which can cause noise in patent classification systems (PCSs). In addition, some specific patents could contain more TFs than claimed or be assigned questionable IPC codes; subsequently, in a regular search for technology/patents, information could be missed. Considering the advantages of deep learning compared with traditional machine learning algorithms in areas such as natural language processing (NLP), text classification and text sentiment analysis, this paper investigates several popular deep learning models and proposes a large-scale multilabel regression (MLR) model to handle specific patent analyses under situations of small sample learning. To verify the proposed MLR model for patent classification, the case study on smart cities and industrial Internet of Things (IIoT) is conducted. The MLR experiments on the TF resolution of smart cities and IIoT have yielded moderate results compared with those of the latest patent classification studies, which also rely on deep learning and the large language models (LLMs), which include RCNN, Bi-LSTM, BERT and GPT-4 etc. Therefore, the proposed MLR model with a customized loss function could be moderately effective for patent classification within a specific technology theme, could have implications for patent classification and the TF resolution of patents, and could further enrich methodologies for patent mining and informetrics based on artificial intelligence (AI).

Suggested Citation

  • Li, Munan & Wang, Liang, 2025. "Leveraging patent classification based on deep learning: The case study on smart cities and industrial Internet of Things," Journal of Informetrics, Elsevier, vol. 19(1).
  • Handle: RePEc:eee:infome:v:19:y:2025:i:1:s1751157724001287
    DOI: 10.1016/j.joi.2024.101616
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157724001287
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2024.101616?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jacques Savoy, 2016. "Text representation strategies: An example with the State of the union addresses," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(8), pages 1858-1870, August.
    2. Nir Chemaya & Daniel Martin, 2024. "Perceptions and detection of AI use in manuscript preparation for academic journals," PLOS ONE, Public Library of Science, vol. 19(7), pages 1-16, July.
    3. Duen‐Ren Liu & Meng‐Jung Shih, 2011. "Hybrid‐patent classification based on patent‐network analysis," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(2), pages 246-256, February.
    4. Duen-Ren Liu & Meng-Jung Shih, 2011. "Hybrid-patent classification based on patent-network analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(2), pages 246-256, February.
    5. Si Hyung Joo & Yeonbae Kim, 2010. "Measuring relatedness between technological fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(2), pages 435-454, May.
    6. Zhang, Yi & Porter, Alan & Chiavetta, Denise & Newman, Nils C. & Guo, Ying, 2019. "Forecasting technical emergence: An introduction," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 626-627.
    7. Munan Li, 2019. "Visualizing the studies on smart cities in the past two decades: a two-dimensional perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 683-705, August.
    8. Zhang, Chengzhi & Xiang, Yi & Hao, Wenke & Li, Zhicheng & Qian, Yuchen & Wang, Yuzhuo, 2023. "Automatic recognition and classification of future work sentences from academic articles in a specific domain," Journal of Informetrics, Elsevier, vol. 17(1).
    9. Shaobo Li & Jie Hu & Yuxin Cui & Jianjun Hu, 2018. "DeepPatent: patent classification with convolutional neural networks and word embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 721-744, November.
    10. Lee, Won Sang & Han, Eun Jin & Sohn, So Young, 2015. "Predicting the pattern of technology convergence using big-data technology on large-scale triadic patents," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 317-329.
    11. Arousha Haghighian Roudsari & Jafar Afshar & Wookey Lee & Suan Lee, 2022. "PatentNet: multi-label classification of patent documents using deep learning based language understanding," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(1), pages 207-231, January.
    12. José Lobo & Deborah Strumsky, 2019. "Sources of inventive novelty: two patent classification schemas, same story," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(1), pages 19-37, July.
    13. Huang, Ying & Porter, Alan L. & Zhang, Yi & Lian, Xiangpeng & Guo, Ying, 2019. "An assessment of technology forecasting: Revisiting earlier analyses on dye-sensitized solar cells (DSSCs)," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 831-843.
    14. David Silver & Julian Schrittwieser & Karen Simonyan & Ioannis Antonoglou & Aja Huang & Arthur Guez & Thomas Hubert & Lucas Baker & Matthew Lai & Adrian Bolton & Yutian Chen & Timothy Lillicrap & Fan , 2017. "Mastering the game of Go without human knowledge," Nature, Nature, vol. 550(7676), pages 354-359, October.
    15. Luciano Kay & Nils Newman & Jan Youtie & Alan L. Porter & Ismael Rafols, 2014. "Patent overlay mapping: Visualizing technological distance," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(12), pages 2432-2443, December.
    16. Li, Munan & Wang, Wenshu & Zhou, Keyu, 2021. "Exploring the technology emergence related to artificial intelligence: A perspective of coupling analyses," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    17. Caviggioli, Federico, 2016. "Technology fusion: Identification and analysis of the drivers of technology convergence using patent data," Technovation, Elsevier, vol. 55, pages 22-32.
    18. Jie Hu & Shaobo Li & Jianjun Hu & Guanci Yang, 2018. "A Hierarchical Feature Extraction Model for Multi-Label Mechanical Patent Classification," Sustainability, MDPI, vol. 10(1), pages 1-22, January.
    19. Nir Chemaya & Daniel Martin, 2023. "Perceptions and Detection of AI Use in Manuscript Preparation for Academic Journals," Papers 2311.14720, arXiv.org, revised Jan 2024.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sungho Son & Nam-Wook Cho, 2020. "Technology Fusion Characteristics in the Solar Photovoltaic Industry of South Korea: A Patent Network Analysis Using IPC Co-Occurrence," Sustainability, MDPI, vol. 12(21), pages 1-19, October.
    2. Choi, Seokkyu & Lee, Hyeonju & Park, Eunjeong & Choi, Sungchul, 2022. "Deep learning for patent landscaping using transformer and graph embedding," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    3. Liyuan Zhang & Wei Liu & Yufei Chen & Xiaodong Yue, 2022. "Reliable Multi-View Deep Patent Classification," Mathematics, MDPI, vol. 10(23), pages 1-13, December.
    4. Bekamiri, Hamid & Hain, Daniel S. & Jurowetzki, Roman, 2024. "PatentSBERTa: A deep NLP based hybrid model for patent distance and classification using augmented SBERT," Technological Forecasting and Social Change, Elsevier, vol. 206(C).
    5. Gui, Liang & Wu, Jie & Liu, Peng & Ma, Tieju, 2025. "Recognition of promising technologies considering inventor and assignee's historic performance: A machine learning approach," Technological Forecasting and Social Change, Elsevier, vol. 214(C).
    6. Su, Hsin-Ning & Moaniba, Igam M., 2017. "Investigating the dynamics of interdisciplinary evolution in technology developments," Technological Forecasting and Social Change, Elsevier, vol. 122(C), pages 12-23.
    7. Sick, Nathalie & Preschitschek, Nina & Leker, Jens & Bröring, Stefanie, 2019. "A new framework to assess industry convergence in high technology environments," Technovation, Elsevier, vol. 84, pages 48-58.
    8. Stefano Basilico & Holger Graf, 2023. "Bridging technologies in the regional knowledge space: measurement and evolution," Journal of Evolutionary Economics, Springer, vol. 33(4), pages 1085-1124, September.
    9. Nicola Melluso & Andrea Bonaccorsi & Filippo Chiarello & Gualtiero Fantoni, 2021. "Rapid detection of fast innovation under the pressure of COVID-19," Papers 2102.00197, arXiv.org.
    10. Park, Mingyu & Geum, Youngjung, 2022. "Two-stage technology opportunity discovery for firm-level decision making: GCN-based link-prediction approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    11. Sasaki, Hajime & Sakata, Ichiro, 2021. "Identifying potential technological spin-offs using hierarchical information in international patent classification," Technovation, Elsevier, vol. 100(C).
    12. Jeon, Eunji & Yoon, Naeun & Sohn, So Young, 2023. "Exploring new digital therapeutics technologies for psychiatric disorders using BERTopic and PatentSBERTa," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    13. Arousha Haghighian Roudsari & Jafar Afshar & Wookey Lee & Suan Lee, 2022. "PatentNet: multi-label classification of patent documents using deep learning based language understanding," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(1), pages 207-231, January.
    14. Ying Tang & Xuming Lou & Zifeng Chen & Chengjin Zhang, 2020. "A Study on Dynamic Patterns of Technology Convergence with IPC Co-Occurrence-Based Analysis: The Case of 3D Printing," Sustainability, MDPI, vol. 12(7), pages 1-26, March.
    15. Aaldering, Lukas Jan & Leker, Jens & Song, Chie Hoon, 2019. "Uncovering the dynamics of market convergence through M&A," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 95-114.
    16. Jeff Alstott & Giorgio Triulzi & Bowen Yan & Jianxi Luo, 2017. "Mapping technology space by normalizing patent networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(1), pages 443-479, January.
    17. Li, Xin & Wang, Yan, 2024. "A novel integrated approach for quantifying the convergence of disruptive technologies from science to technology," Technological Forecasting and Social Change, Elsevier, vol. 209(C).
    18. Eum, Wonsub & Lee, Jeong-Dong, 2019. "Role of production in fostering innovation," Technovation, Elsevier, vol. 84, pages 1-10.
    19. Sajad Ashouri & Anne-Laure Mention & Kosmas X. Smyrnios, 2021. "Anticipation and analysis of industry convergence using patent-level indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5727-5758, July.
    20. Kim, Tae San & Sohn, So Young, 2020. "Machine-learning-based deep semantic analysis approach for forecasting new technology convergence," Technological Forecasting and Social Change, Elsevier, vol. 157(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:19:y:2025:i:1:s1751157724001287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.