IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v176y2022ics0040162522000099.html
   My bibliography  Save this article

Identifying the technology convergence using patent text information: A graph convolutional networks (GCN)-based approach

Author

Listed:
  • Zhu, Chen
  • Motohashi, Kazuyuki

Abstract

The potential for new values and products created by technology convergence to disruptively transform existing industries and markets is high. In this regard, it has been crucial for companies to understand and identify potential convergence patterns as early as possible to make timely strategic plans. This study proposes a new semantic method by showing how a graph convolutional network model can be used to monitor technology convergence. In particular, the model is trained to generate patents and technology keyword vectors from which new indicators are derived. We validate these new indicators and show that the proposed method outperforms existing studies using information regarding cross-citations and co-occurrence of international patent classification classes. Furthermore, we presented the usefulness of the proposed method to monitor technology convergence using a case study of the convergence between artificial intelligence (AI) and distributed ledger technology (DLT). The results show that convergence between AI and DLT is driven mainly by employing AI for DLT, and the role of each keyword (sub-domain) in the convergence process is also presented.

Suggested Citation

  • Zhu, Chen & Motohashi, Kazuyuki, 2022. "Identifying the technology convergence using patent text information: A graph convolutional networks (GCN)-based approach," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
  • Handle: RePEc:eee:tefoso:v:176:y:2022:i:c:s0040162522000099
    DOI: 10.1016/j.techfore.2022.121477
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162522000099
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2022.121477?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David J. TEECE, 2008. "Profiting from technological innovation: Implications for integration, collaboration, licensing and public policy," World Scientific Book Chapters, in: The Transfer And Licensing Of Know-How And Intellectual Property Understanding the Multinational Enterprise in the Modern World, chapter 5, pages 67-87, World Scientific Publishing Co. Pte. Ltd..
    2. Karvonen, Matti & Kässi, Tuomo, 2013. "Patent citations as a tool for analysing the early stages of convergence," Technological Forecasting and Social Change, Elsevier, vol. 80(6), pages 1094-1107.
    3. Han, Eun Jin & Sohn, So Young, 2016. "Technological convergence in standards for information and communication technologies," Technological Forecasting and Social Change, Elsevier, vol. 106(C), pages 1-10.
    4. Eilers, Kathi & Frischkorn, Jonas & Eppinger, Elisabeth & Walter, Lothar & Moehrle, Martin G., 2019. "Patent-based semantic measurement of one-way and two-way technology convergence: The case of ultraviolet light emitting diodes (UV-LEDs)," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 341-353.
    5. Euiseok Kim & Yongrae Cho & Wonjoon Kim, 2014. "Dynamic patterns of technological convergence in printed electronics technologies: patent citation network," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 975-998, February.
    6. Martin G. Moehrle & Jan M. Gerken, 2012. "Measuring textual patent similarity on the basis of combined concepts: design decisions and their consequences," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 805-826, June.
    7. Kim, Juram & Kim, Seungho & Lee, Changyong, 2019. "Anticipating technological convergence: Link prediction using Wikipedia hyperlinks," Technovation, Elsevier, vol. 79(C), pages 25-34.
    8. Zhou, Yuan & Dong, Fang & Kong, Dejing & Liu, Yufei, 2019. "Unfolding the convergence process of scientific knowledge for the early identification of emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 205-220.
    9. Caviggioli, Federico, 2016. "Technology fusion: Identification and analysis of the drivers of technology convergence using patent data," Technovation, Elsevier, vol. 55, pages 22-32.
    10. Jeeeun Kim & Sungjoo Lee, 2017. "Forecasting and identifying multi-technology convergence based on patent data: the case of IT and BT industries in 2020," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 47-65, April.
    11. Kim, Tae San & Sohn, So Young, 2020. "Machine-learning-based deep semantic analysis approach for forecasting new technology convergence," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    12. Dejing Kong & Jianzhong Yang & Lingfeng Li, 2020. "Early identification of technological convergence in numerical control machine tool: a deep learning approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 1983-2009, December.
    13. Martin Reisenbichler & Thomas Reutterer, 2019. "Topic modeling in marketing: recent advances and research opportunities," Journal of Business Economics, Springer, vol. 89(3), pages 327-356, April.
    14. Lee, Won Sang & Han, Eun Jin & Sohn, So Young, 2015. "Predicting the pattern of technology convergence using big-data technology on large-scale triadic patents," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 317-329.
    15. Song, Bomi & Suh, Yongyoon, 2019. "Identifying convergence fields and technologies for industrial safety: LDA-based network analysis," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 115-126.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Park, Mingyu & Geum, Youngjung, 2022. "Two-stage technology opportunity discovery for firm-level decision making: GCN-based link-prediction approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    2. Yogesh K. Dwivedi & A. Sharma & Nripendra P. Rana & M. Giannakis & P. Goel & Vincent Dutot, 2023. "Evolution of Artificial Intelligence Research in Technological Forecasting and Social Change: Research Topics, Trends, and Future Directions," Post-Print hal-04292607, HAL.
    3. Li, Jing & Yu, Qian, 2024. "Scientists’ disciplinary characteristics and collaboration behaviour under the convergence paradigm: A multilevel network perspective," Journal of Informetrics, Elsevier, vol. 18(1).
    4. Kraus, Sascha & Kumar, Satish & Lim, Weng Marc & Kaur, Jaspreet & Sharma, Anuj & Schiavone, Francesco, 2023. "From moon landing to metaverse: Tracing the evolution of Technological Forecasting and Social Change," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    5. Seo, Wonchul & Afifuddin, Mokh, 2024. "Developing a supervised learning model for anticipating potential technology convergence between technology topics," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    6. Chen Zhu & Kazuyuki Motohashi, 2023. "Government R&D spending as a driving force of technology convergence: a case study of the Advanced Sequencing Technology Program," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(5), pages 3035-3065, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seo, Wonchul & Afifuddin, Mokh, 2024. "Developing a supervised learning model for anticipating potential technology convergence between technology topics," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    2. ZHU Chen & MOTOHASHI Kazuyuki, 2022. "Government R&D spending as a driving force of technology convergence," Discussion papers 22030, Research Institute of Economy, Trade and Industry (RIETI).
    3. Park, Mingyu & Geum, Youngjung, 2022. "Two-stage technology opportunity discovery for firm-level decision making: GCN-based link-prediction approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    4. Ying Tang & Xuming Lou & Zifeng Chen & Chengjin Zhang, 2020. "A Study on Dynamic Patterns of Technology Convergence with IPC Co-Occurrence-Based Analysis: The Case of 3D Printing," Sustainability, MDPI, vol. 12(7), pages 1-26, March.
    5. Chen Zhu & Kazuyuki Motohashi, 2023. "Government R&D spending as a driving force of technology convergence: a case study of the Advanced Sequencing Technology Program," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(5), pages 3035-3065, May.
    6. Sajad Ashouri & Anne-Laure Mention & Kosmas X. Smyrnios, 2021. "Anticipation and analysis of industry convergence using patent-level indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5727-5758, July.
    7. Zhao, Shengchao & Zeng, Deming & Li, Jian & Feng, Ke & Wang, Yao, 2023. "Quantity or quality: The roles of technology and science convergence on firm innovation performance," Technovation, Elsevier, vol. 126(C).
    8. Sick, Nathalie & Bröring, Stefanie, 2022. "Exploring the research landscape of convergence from a TIM perspective: A review and research agenda," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    9. Jungpyo Lee & So Young Sohn, 2021. "Recommendation system for technology convergence opportunities based on self-supervised representation learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 1-25, January.
    10. Jong Wook Lee & So Young Sohn, 2021. "Patent data based search framework for IT R&D employees for convergence technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5687-5705, July.
    11. Dejing Kong & Jianzhong Yang & Lingfeng Li, 2020. "Early identification of technological convergence in numerical control machine tool: a deep learning approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 1983-2009, December.
    12. Kim, Tae San & Sohn, So Young, 2020. "Machine-learning-based deep semantic analysis approach for forecasting new technology convergence," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    13. Juite Wang & Tzu-Yen Hsu, 2023. "Early discovery of emerging multi-technology convergence for analyzing technology opportunities from patent data: the case of smart health," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4167-4196, August.
    14. Qian Xu & Hua Cheng, 2021. "Research on the Evolution of Textile Technological Convergence in China," Sustainability, MDPI, vol. 13(5), pages 1-13, February.
    15. Qian Xu & Yabin Yu & Xiao Yu, 2022. "Analysis of the Technological Convergence in Smart Textiles," Sustainability, MDPI, vol. 14(20), pages 1-13, October.
    16. Nicola Melluso & Andrea Bonaccorsi & Filippo Chiarello & Gualtiero Fantoni, 2021. "Rapid detection of fast innovation under the pressure of COVID-19," Papers 2102.00197, arXiv.org.
    17. Aaldering, Lukas Jan & Leker, Jens & Song, Chie Hoon, 2019. "Uncovering the dynamics of market convergence through M&A," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 95-114.
    18. Eilers, Kathi & Frischkorn, Jonas & Eppinger, Elisabeth & Walter, Lothar & Moehrle, Martin G., 2019. "Patent-based semantic measurement of one-way and two-way technology convergence: The case of ultraviolet light emitting diodes (UV-LEDs)," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 341-353.
    19. Changyong Lee & Suckwon Hong & Juram Kim, 2021. "Anticipating multi-technology convergence: a machine learning approach using patent information," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 1867-1896, March.
    20. Park, Inchae & Yoon, Byungun, 2018. "Technological opportunity discovery for technological convergence based on the prediction of technology knowledge flow in a citation network," Journal of Informetrics, Elsevier, vol. 12(4), pages 1199-1222.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:176:y:2022:i:c:s0040162522000099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.