IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i20p13451-d946265.html
   My bibliography  Save this article

Analysis of the Technological Convergence in Smart Textiles

Author

Listed:
  • Qian Xu

    (School of Economics and Management, China Jiliang University, Hangzhou 310018, China
    School of Economics and Management, Zhejiang Sci-Tech University, Hangzhou 310018, China)

  • Yabin Yu

    (School of Economics and Management, China Jiliang University, Hangzhou 310018, China
    School of Economics and Management, Zhejiang Sci-Tech University, Hangzhou 310018, China)

  • Xiao Yu

    (School of Economics and Management, China Jiliang University, Hangzhou 310018, China)

Abstract

Convergence between emerging technologies and traditional industries has become a crucial strategy for enhancing a technology’s competitiveness. Technical convergence (TC) for smart textiles aims to reveal the convergence of emerging technologies with textile technologies, including the field, structure, and critical technologies of the TC. For the empirical analysis, the technology life cycle (TLC) and network analysis method are utilized to observe the TC of 15,125 patent data for textiles from the Derwent Patent Database. The results indicate the following: (1) after 2021, the TC of smart textiles matured, with the number of patents reaching a peak in 2030. (2) Emerging technologies and textile technologies are inextricably linked. In addition to textile technologies, the primary technical fields involved in smart textiles are electronic engineering, tools design, chemical engineering, and mechanical engineering. Electronic engineering is the most common of these fields, accounting for 29.11%. (3) From a structural perspective, the density, breadth, and depth of the TC continues to expand. (4) Measurement, computer technology, and audio technology will be always essential to the TC, whereas electrical machinery, instrumentation, energy technology, other specialized technologies, and chemical engineering have tremendous growth potential. The findings above have substantial implications for the phenomenon of the TCs that have emerged in emerging technology and traditional industry fields. They can also aid the government in formulating policies that promote the transformation and growth of related industries.

Suggested Citation

  • Qian Xu & Yabin Yu & Xiao Yu, 2022. "Analysis of the Technological Convergence in Smart Textiles," Sustainability, MDPI, vol. 14(20), pages 1-13, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13451-:d:946265
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/20/13451/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/20/13451/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jae Young Choi & Seongkyoon Jeong & Kyunam Kim, 2015. "A Study on Diffusion Pattern of Technology Convergence: Patent Analysis for Korea," Sustainability, MDPI, vol. 7(9), pages 1-24, August.
    2. Park, Inchae & Yoon, Byungun, 2018. "Technological opportunity discovery for technological convergence based on the prediction of technology knowledge flow in a citation network," Journal of Informetrics, Elsevier, vol. 12(4), pages 1199-1222.
    3. Seongkyoon Jeong & Jong-Chan Kim & Jae Young Choi, 2015. "Technology convergence: What developmental stage are we in?," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(3), pages 841-871, September.
    4. Han, Eun Jin & Sohn, So Young, 2016. "Technological convergence in standards for information and communication technologies," Technological Forecasting and Social Change, Elsevier, vol. 106(C), pages 1-10.
    5. Lee, Won Sang & Han, Eun Jin & Sohn, So Young, 2015. "Predicting the pattern of technology convergence using big-data technology on large-scale triadic patents," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 317-329.
    6. Ying Huang & Donghua Zhu & Yue Qian & Yi Zhang & Alan L. Porter & Yuqin Liu & Ying Guo, 2017. "A hybrid method to trace technology evolution pathways: a case study of 3D printing," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 185-204, April.
    7. Euiseok Kim & Yongrae Cho & Wonjoon Kim, 2014. "Dynamic patterns of technological convergence in printed electronics technologies: patent citation network," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 975-998, February.
    8. Kose, Toshihiro & Sakata, Ichiro, 2019. "Identifying technology convergence in the field of robotics research," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 751-766.
    9. Chen-Yuan Liu & Jhen-Cheng Wang, 2010. "Forecasting the development of the biped robot walking technique in Japan through S-curve model analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(1), pages 21-36, January.
    10. Caviggioli, Federico, 2016. "Technology fusion: Identification and analysis of the drivers of technology convergence using patent data," Technovation, Elsevier, vol. 55, pages 22-32.
    11. Jeeeun Kim & Sungjoo Lee, 2017. "Forecasting and identifying multi-technology convergence based on patent data: the case of IT and BT industries in 2020," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 47-65, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Tang & Xuming Lou & Zifeng Chen & Chengjin Zhang, 2020. "A Study on Dynamic Patterns of Technology Convergence with IPC Co-Occurrence-Based Analysis: The Case of 3D Printing," Sustainability, MDPI, vol. 12(7), pages 1-26, March.
    2. Seo, Wonchul & Afifuddin, Mokh, 2024. "Developing a supervised learning model for anticipating potential technology convergence between technology topics," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    3. Park, Mingyu & Geum, Youngjung, 2022. "Two-stage technology opportunity discovery for firm-level decision making: GCN-based link-prediction approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    4. Qian Xu & Hua Cheng, 2021. "Research on the Evolution of Textile Technological Convergence in China," Sustainability, MDPI, vol. 13(5), pages 1-13, February.
    5. Jong Wook Lee & So Young Sohn, 2021. "Patent data based search framework for IT R&D employees for convergence technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5687-5705, July.
    6. Dejing Kong & Jianzhong Yang & Lingfeng Li, 2020. "Early identification of technological convergence in numerical control machine tool: a deep learning approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 1983-2009, December.
    7. Sajad Ashouri & Anne-Laure Mention & Kosmas X. Smyrnios, 2021. "Anticipation and analysis of industry convergence using patent-level indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5727-5758, July.
    8. Jakob Hoffmann & Johannes Glückler, 2023. "Technological Cohesion and Convergence: A Main Path Analysis of the Bioeconomy, 1900–2020," Sustainability, MDPI, vol. 15(16), pages 1-17, August.
    9. Zhao, Shengchao & Zeng, Deming & Li, Jian & Feng, Ke & Wang, Yao, 2023. "Quantity or quality: The roles of technology and science convergence on firm innovation performance," Technovation, Elsevier, vol. 126(C).
    10. Juite Wang & Tzu-Yen Hsu, 2023. "Early discovery of emerging multi-technology convergence for analyzing technology opportunities from patent data: the case of smart health," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4167-4196, August.
    11. Sun, Bing & Yang, Xueting & Zhong, Shen & Tian, Shengnan & Liang, Tian, 2024. "How do technology convergence and expansibility affect information technology diffusion? Evidence from the internet of things technology in China," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    12. Zhu, Chen & Motohashi, Kazuyuki, 2022. "Identifying the technology convergence using patent text information: A graph convolutional networks (GCN)-based approach," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    13. Soyea Lee & Junseok Hwang & Eunsang Cho, 2022. "Comparing technology convergence of artificial intelligence on the industrial sectors: two-way approaches on network analysis and clustering analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(1), pages 407-452, January.
    14. Jungpyo Lee & So Young Sohn, 2021. "Recommendation system for technology convergence opportunities based on self-supervised representation learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 1-25, January.
    15. ZHU Chen & MOTOHASHI Kazuyuki, 2022. "Government R&D spending as a driving force of technology convergence," Discussion papers 22030, Research Institute of Economy, Trade and Industry (RIETI).
    16. Aaldering, Lukas Jan & Leker, Jens & Song, Chie Hoon, 2019. "Uncovering the dynamics of market convergence through M&A," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 95-114.
    17. Kim, Tae San & Sohn, So Young, 2020. "Machine-learning-based deep semantic analysis approach for forecasting new technology convergence," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    18. Joon Hyung Cho & Jungpyo Lee & So Young Sohn, 2021. "Predicting future technological convergence patterns based on machine learning using link prediction," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5413-5429, July.
    19. Chen Zhu & Kazuyuki Motohashi, 2023. "Government R&D spending as a driving force of technology convergence: a case study of the Advanced Sequencing Technology Program," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(5), pages 3035-3065, May.
    20. Changyong Lee & Suckwon Hong & Juram Kim, 2021. "Anticipating multi-technology convergence: a machine learning approach using patent information," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 1867-1896, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13451-:d:946265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.