IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i14p6425-d1701188.html
   My bibliography  Save this article

An Italian Patent Multi-Label Classification System to Support the Innovation Demand and Supply Matching

Author

Listed:
  • Nicola Amoroso

    (Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
    Italian Institute of Nuclear Physics, Bari Section, 70125 Bari, Italy
    These authors contributed equally to this work.)

  • Annamaria Demarinis Loiotile

    (Department of Electrical and Information Engineering, Polytechnic University of Bari, 70125 Bari, Italy
    Interuniversity Department of Physics, University of Bari Aldo Moro, 70125 Bari, Italy
    These authors contributed equally to this work.)

  • Ester Pantaleo

    (Interuniversity Department of Physics, University of Bari Aldo Moro, 70125 Bari, Italy)

  • Giuseppe Conti

    (Netval—Network for Research Valorisation, 23900 Lecco, Italy
    Head Office, University School for Advanced Studies IUSS, 27100 Pavia, Italy)

  • Shiva Loccisano

    (Netval—Network for Research Valorisation, 23900 Lecco, Italy)

  • Sabina Tangaro

    (Italian Institute of Nuclear Physics, Bari Section, 70125 Bari, Italy
    Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70125 Bari, Italy)

  • Alfonso Monaco

    (Italian Institute of Nuclear Physics, Bari Section, 70125 Bari, Italy
    Interuniversity Department of Physics, University of Bari Aldo Moro, 70125 Bari, Italy)

  • Roberto Bellotti

    (Italian Institute of Nuclear Physics, Bari Section, 70125 Bari, Italy
    Interuniversity Department of Physics, University of Bari Aldo Moro, 70125 Bari, Italy)

Abstract

The innovation demand and supply matching requires an accurate and time-consuming analysis of patents and the identification of their technological domains; since these tasks can be particularly challenging, this is why recent studies have evaluated the possibility of adopting Artificial Intelligence based on NLP techniques. Here, we present an automated workflow for patent analysis and classification devoted to the Italian patent scenario. High-quality data from the online platform KnowledgeShare (KS) were investigated: KS is the first patent management platform on the Italian innovation scene. A not secondary aspect consisted in determining which words mostly influenced patent classification, thus characterizing the corresponding research areas. Several models were compared to ensure the workflow’s robustness; Logistic Regression (LR) resulted in the best-performing model, and its performance compared well with the State of the Art. For each technological domain in the KS database, we evaluated and discussed its characteristic words; furthermore, a further analysis was focused on explaining why some domains, such as “Packaging” and “Environment,” were particularly confounding. This last aspect is of paramount importance to identify cross-contamination effects among research areas.

Suggested Citation

  • Nicola Amoroso & Annamaria Demarinis Loiotile & Ester Pantaleo & Giuseppe Conti & Shiva Loccisano & Sabina Tangaro & Alfonso Monaco & Roberto Bellotti, 2025. "An Italian Patent Multi-Label Classification System to Support the Innovation Demand and Supply Matching," Sustainability, MDPI, vol. 17(14), pages 1-27, July.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:14:p:6425-:d:1701188
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/14/6425/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/14/6425/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kyebambe, Moses Ntanda & Cheng, Ge & Huang, Yunqing & He, Chunhui & Zhang, Zhenyu, 2017. "Forecasting emerging technologies: A supervised learning approach through patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 125(C), pages 236-244.
    2. Yu, Xiang & Zhang, Ben, 2019. "Obtaining advantages from technology revolution: A patent roadmap for competition analysis and strategy planning," Technological Forecasting and Social Change, Elsevier, vol. 145(C), pages 273-283.
    3. Karvonen, Matti & Kässi, Tuomo, 2013. "Patent citations as a tool for analysing the early stages of convergence," Technological Forecasting and Social Change, Elsevier, vol. 80(6), pages 1094-1107.
    4. Lee, Jong-Seon & Park, Ji-Hoon & Bae, Zong-Tae, 2017. "The effects of licensing-in on innovative performance in different technological regimes," Research Policy, Elsevier, vol. 46(2), pages 485-496.
    5. Annamaria Demarinis Loiotile & Francesco De Nicolò & Adriana Agrimi & Loredana Bellantuono & Marianna La Rocca & Alfonso Monaco & Ester Pantaleo & Sabina Tangaro & Nicola Amoroso & Roberto Bellotti, 2022. "Best Practices in Knowledge Transfer: Insights from Top Universities," Sustainability, MDPI, vol. 14(22), pages 1-23, November.
    6. Lybbert, Travis J. & Zolas, Nikolas J., 2014. "Getting patents and economic data to speak to each other: An ‘Algorithmic Links with Probabilities’ approach for joint analyses of patenting and economic activity," Research Policy, Elsevier, vol. 43(3), pages 530-542.
    7. Cinthia M. Souza & Magali R. G. Meireles & Paulo E. M. Almeida, 2021. "A comparative study of abstractive and extractive summarization techniques to label subgroups on patent dataset," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 135-156, January.
    8. Ernst, Holger, 2003. "Patent information for strategic technology management," World Patent Information, Elsevier, vol. 25(3), pages 233-242, September.
    9. Roessner, David & Bond, Jennifer & Okubo, Sumiye & Planting, Mark, 2013. "The economic impact of licensed commercialized inventions originating in university research," Research Policy, Elsevier, vol. 42(1), pages 23-34.
    10. Trappey, Amy & Trappey, Charles V. & Hsieh, Alex, 2021. "An intelligent patent recommender adopting machine learning approach for natural language processing: A case study for smart machinery technology mining," Technological Forecasting and Social Change, Elsevier, vol. 164(C).
    11. Tao Hu & Yin Zhang, 2021. "A spatial–temporal network analysis of patent transfers from U.S. universities to firms," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 27-54, January.
    12. Puccetti, Giovanni & Giordano, Vito & Spada, Irene & Chiarello, Filippo & Fantoni, Gualtiero, 2023. "Technology identification from patent texts: A novel named entity recognition method," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    13. Shaobo Li & Jie Hu & Yuxin Cui & Jianjun Hu, 2018. "DeepPatent: patent classification with convolutional neural networks and word embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 721-744, November.
    14. Wang, Yuandi & Ning, Lutao & Chen, Jin, 2014. "Product diversification through licensing: Empirical evidence from Chinese firms," European Management Journal, Elsevier, vol. 32(4), pages 577-586.
    15. Arousha Haghighian Roudsari & Jafar Afshar & Wookey Lee & Suan Lee, 2022. "PatentNet: multi-label classification of patent documents using deep learning based language understanding," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(1), pages 207-231, January.
    16. D. Thorleuchter & D. Van Den Poel & A. Prinzie & -, 2010. "A compared R&D-based and patent-based cross impact analysis for identifying relationships between technologies," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 10/632, Ghent University, Faculty of Economics and Business Administration.
    17. Youngjae Choi & Sanghyun Park & Sungjoo Lee, 2021. "Identifying emerging technologies to envision a future innovation ecosystem: A machine learning approach to patent data," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5431-5476, July.
    18. Jie Chen & Jialin Chen & Shu Zhao & Yanping Zhang & Jie Tang, 2020. "Exploiting word embedding for heterogeneous topic model towards patent recommendation," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2091-2108, December.
    19. Kim, Gabjo & Bae, Jinwoo, 2017. "A novel approach to forecast promising technology through patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 228-237.
    20. Jie Hu & Shaobo Li & Jianjun Hu & Guanci Yang, 2018. "A Hierarchical Feature Extraction Model for Multi-Label Mechanical Patent Classification," Sustainability, MDPI, vol. 10(1), pages 1-22, January.
    21. Wei Du & Yibo Wang & Wei Xu & Jian Ma, 2021. "A personalized recommendation system for high-quality patent trading by leveraging hybrid patent analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9369-9391, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Puccetti, Giovanni & Giordano, Vito & Spada, Irene & Chiarello, Filippo & Fantoni, Gualtiero, 2023. "Technology identification from patent texts: A novel named entity recognition method," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    2. Gui, Liang & Wu, Jie & Liu, Peng & Ma, Tieju, 2025. "Recognition of promising technologies considering inventor and assignee's historic performance: A machine learning approach," Technological Forecasting and Social Change, Elsevier, vol. 214(C).
    3. Yuan Zhou & Fang Dong & Yufei Liu & Liang Ran, 2021. "A deep learning framework to early identify emerging technologies in large-scale outlier patents: an empirical study of CNC machine tool," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 969-994, February.
    4. Arousha Haghighian Roudsari & Jafar Afshar & Wookey Lee & Suan Lee, 2022. "PatentNet: multi-label classification of patent documents using deep learning based language understanding," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(1), pages 207-231, January.
    5. Su, Yu-Shan & Huang, Hsini & Daim, Tugrul & Chien, Pan-Wei & Peng, Ru-Ling & Karaman Akgul, Arzu, 2023. "Assessing the technological trajectory of 5G-V2X autonomous driving inventions: Use of patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    6. Li, Munan & Wang, Liang, 2025. "Leveraging patent classification based on deep learning: The case study on smart cities and industrial Internet of Things," Journal of Informetrics, Elsevier, vol. 19(1).
    7. Erzurumlu, S. Sinan & Pachamanova, Dessislava, 2020. "Topic modeling and technology forecasting for assessing the commercial viability of healthcare innovations," Technological Forecasting and Social Change, Elsevier, vol. 156(C).
    8. Youngjae Choi & Sanghyun Park & Sungjoo Lee, 2021. "Identifying emerging technologies to envision a future innovation ecosystem: A machine learning approach to patent data," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5431-5476, July.
    9. Liyuan Zhang & Wei Liu & Yufei Chen & Xiaodong Yue, 2022. "Reliable Multi-View Deep Patent Classification," Mathematics, MDPI, vol. 10(23), pages 1-13, December.
    10. Lijie Feng & Kehui Liu & Jinfeng Wang & Kuo-Yi Lin & Ke Zhang & Luyao Zhang, 2022. "Identifying Promising Technologies of Electric Vehicles from the Perspective of Market and Technical Attributes," Energies, MDPI, vol. 15(20), pages 1-22, October.
    11. Bekamiri, Hamid & Hain, Daniel S. & Jurowetzki, Roman, 2024. "PatentSBERTa: A deep NLP based hybrid model for patent distance and classification using augmented SBERT," Technological Forecasting and Social Change, Elsevier, vol. 206(C).
    12. Serkan Altuntas & Zulfiye Erdogan & Turkay Dereli, 2020. "A clustering-based approach for the evaluation of candidate emerging technologies," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1157-1177, August.
    13. Seongkyoon Jeong & Jong-Chan Kim & Jae Young Choi, 2015. "Technology convergence: What developmental stage are we in?," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(3), pages 841-871, September.
    14. Choi, Jaewoong & Yoon, Janghyeok, 2022. "Measuring knowledge exploration distance at the patent level: Application of network embedding and citation analysis," Journal of Informetrics, Elsevier, vol. 16(2).
    15. Sungho Son & Nam-Wook Cho, 2020. "Technology Fusion Characteristics in the Solar Photovoltaic Industry of South Korea: A Patent Network Analysis Using IPC Co-Occurrence," Sustainability, MDPI, vol. 12(21), pages 1-19, October.
    16. Niemann, Helen & Moehrle, Martin G. & Frischkorn, Jonas, 2017. "Use of a new patent text-mining and visualization method for identifying patenting patterns over time: Concept, method and test application," Technological Forecasting and Social Change, Elsevier, vol. 115(C), pages 210-220.
    17. Altuntas, Serkan & Dereli, Turkay & Kusiak, Andrew, 2015. "Analysis of patent documents with weighted association rules," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 249-262.
    18. Weiwei Deng & Jian Ma, 2022. "A knowledge graph approach for recommending patents to companies," Electronic Commerce Research, Springer, vol. 22(4), pages 1435-1466, December.
    19. Song, Kisik & Kim, Kyuwoong & Lee, Sungjoo, 2018. "Identifying promising technologies using patents: A retrospective feature analysis and a prospective needs analysis on outlier patents," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 118-132.
    20. Jeeeun Kim & Sungjoo Lee, 2017. "Forecasting and identifying multi-technology convergence based on patent data: the case of IT and BT industries in 2020," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 47-65, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:14:p:6425-:d:1701188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.