Knowledge graph enhanced citation recommendation model for patent examiners
Author
Abstract
Suggested Citation
DOI: 10.1007/s11192-024-04966-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Juan Alcácer & Michelle Gittelman, 2006. "Patent Citations as a Measure of Knowledge Flows: The Influence of Examiner Citations," The Review of Economics and Statistics, MIT Press, vol. 88(4), pages 774-779, November.
- Xuefeng Wang & Huichao Ren & Yun Chen & Yuqin Liu & Yali Qiao & Ying Huang, 2019. "Measuring patent similarity with SAO semantic analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 1-23, October.
- Terrence A. Brooks, 1985. "Private acts and public objects: An investigation of citer motivations," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 36(4), pages 223-229, July.
- Jungpyo Lee & So Young Sohn, 2021. "Recommendation system for technology convergence opportunities based on self-supervised representation learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 1-25, January.
- Arts, Sam & Hou, Jianan & Gomez, Juan Carlos, 2021. "Natural language processing to identify the creation and impact of new technologies in patent text: Code, data, and new measures," Research Policy, Elsevier, vol. 50(2).
- Yamauchi, Isamu & Nagaoka, Sadao, 2015. "Does the outsourcing of prior art search increase the efficiency of patent examination? Evidence from Japan," Research Policy, Elsevier, vol. 44(8), pages 1601-1614.
- Sam Arts & Bruno Cassiman & Juan Carlos Gomez, 2018.
"Text matching to measure patent similarity,"
Strategic Management Journal, Wiley Blackwell, vol. 39(1), pages 62-84, January.
- Sam Arts & Bruno Cassiman & Juan Carlos Gomez, 2017. "Text matching to measure patent similarity," Working Papers of Department of Management, Strategy and Innovation, Leuven 590543, KU Leuven, Faculty of Economics and Business (FEB), Department of Management, Strategy and Innovation, Leuven.
- Kim, Yee Kyoung & Oh, Jun Byoung, 2017. "Examination workloads, grant decision bias and examination quality of patent office," Research Policy, Elsevier, vol. 46(5), pages 1005-1019.
- Zhang, Yi & Shang, Lining & Huang, Lu & Porter, Alan L. & Zhang, Guangquan & Lu, Jie & Zhu, Donghua, 2016. "A hybrid similarity measure method for patent portfolio analysis," Journal of Informetrics, Elsevier, vol. 10(4), pages 1108-1130.
- Yonghe Lu & Xin Xiong & Weiting Zhang & Jiaxin Liu & Ruijie Zhao, 2020. "Research on classification and similarity of patent citation based on deep learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(2), pages 813-839, May.
- Choi, Seokkyu & Lee, Hyeonju & Park, Eunjeong & Choi, Sungchul, 2022. "Deep learning for patent landscaping using transformer and graph embedding," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
- Weiwei Deng & Jian Ma, 2022. "A knowledge graph approach for recommending patents to companies," Electronic Commerce Research, Springer, vol. 22(4), pages 1435-1466, December.
- Jaewoong Choi & Jiho Lee & Janghyeok Yoon & Sion Jang & Jaeyoung Kim & Sungchul Choi, 2022. "A two-stage deep learning-based system for patent citation recommendation," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6615-6636, November.
- deGrazia, Charles A.W. & Pairolero, Nicholas A. & Teodorescu, Mike H.M., 2021. "Examination incentives, learning, and patent office outcomes: The use of examiner’s amendments at the USPTO," Research Policy, Elsevier, vol. 50(10).
- Tong, Tony W. & Zhang, Kun & He, Zi-Lin & Zhang, Yuchen, 2018. "What determines the duration of patent examination in China? An outcome-specific duration analysis of invention patent applications at SIPO," Research Policy, Elsevier, vol. 47(3), pages 583-591.
- Martin Meyer, 2000. "What is Special about Patent Citations? Differences between Scientific and Patent Citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 49(1), pages 93-123, August.
- Choi, Jaewoong & Yoon, Janghyeok, 2022. "Measuring knowledge exploration distance at the patent level: Application of network embedding and citation analysis," Journal of Informetrics, Elsevier, vol. 16(2).
- Jie Chen & Jialin Chen & Shu Zhao & Yanping Zhang & Jie Tang, 2020. "Exploiting word embedding for heterogeneous topic model towards patent recommendation," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2091-2108, December.
- Dietmar Harhoff & Stefan Wagner, 2009. "The Duration of Patent Examination at the European Patent Office," Management Science, INFORMS, vol. 55(12), pages 1969-1984, December.
- An, Xin & Li, Jinghong & Xu, Shuo & Chen, Liang & Sun, Wei, 2021. "An improved patent similarity measurement based on entities and semantic relations," Journal of Informetrics, Elsevier, vol. 15(2).
- Hain, Daniel S. & Jurowetzki, Roman & Buchmann, Tobias & Wolf, Patrick, 2022. "A text-embedding-based approach to measuring patent-to-patent technological similarity," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
- Tetsuo Wada, 2018. "The choice of examiner patent citations for refusals: evidence from the trilateral offices," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 825-843, November.
- Teng, Hao & Wang, Nan & Zhao, Hongyu & Hu, Yingtong & Jin, Haitao, 2024. "Enhancing semantic text similarity with functional semantic knowledge (FOP) in patents," Journal of Informetrics, Elsevier, vol. 18(1).
- Chen, Lixin, 2017. "Do patent citations indicate knowledge linkage? The evidence from text similarities between patents and their citations," Journal of Informetrics, Elsevier, vol. 11(1), pages 63-79.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jaewoong Choi & Jiho Lee & Janghyeok Yoon & Sion Jang & Jaeyoung Kim & Sungchul Choi, 2022. "A two-stage deep learning-based system for patent citation recommendation," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6615-6636, November.
- Teng, Hao & Wang, Nan & Zhao, Hongyu & Hu, Yingtong & Jin, Haitao, 2024. "Enhancing semantic text similarity with functional semantic knowledge (FOP) in patents," Journal of Informetrics, Elsevier, vol. 18(1).
- Bekamiri, Hamid & Hain, Daniel S. & Jurowetzki, Roman, 2024. "PatentSBERTa: A deep NLP based hybrid model for patent distance and classification using augmented SBERT," Technological Forecasting and Social Change, Elsevier, vol. 206(C).
- Zhu, Kejia & Malhotra, Shavin & Li, Yaohan, 2022. "Technological diversity of patent applications and decision pendency," Research Policy, Elsevier, vol. 51(1).
- Hain, Daniel S. & Jurowetzki, Roman & Buchmann, Tobias & Wolf, Patrick, 2022. "A text-embedding-based approach to measuring patent-to-patent technological similarity," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
- Shicheng Tan & Tao Zhang & Shu Zhao & Yanping Zhang, 2023. "Self-supervised scientific document recommendation based on contrastive learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(9), pages 5027-5049, September.
- Nagaoka, Sadao & Yamauchi, Isamu, 2022. "Information constraints and examination quality in patent offices: The effect of initiation lags," International Journal of Industrial Organization, Elsevier, vol. 82(C).
- Kang, Byeongwoo & Bekkers, Rudi, 2022. "The determinants of parallel invention : Measuring the role of information sharing and personal interaction between inventors," IIR Working Paper 22-06, Institute of Innovation Research, Hitotsubashi University.
- Li Yao & He Ni, 2023. "Prediction of patent grant and interpreting the key determinants: an application of interpretable machine learning approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(9), pages 4933-4969, September.
- An, Xin & Li, Jinghong & Xu, Shuo & Chen, Liang & Sun, Wei, 2021. "An improved patent similarity measurement based on entities and semantic relations," Journal of Informetrics, Elsevier, vol. 15(2).
- Fernández, Ana María & Ferrándiz, Esther & Medina, Jennifer, 2022. "The diffusion of energy technologies. Evidence from renewable, fossil, and nuclear energy patents," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
- Puccetti, Giovanni & Giordano, Vito & Spada, Irene & Chiarello, Filippo & Fantoni, Gualtiero, 2023. "Technology identification from patent texts: A novel named entity recognition method," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
- Satoshi Yasukawa & Shingo Kano, 2014. "Validating the usefulness of examiners’ forward citations from the viewpoint of applicants’ self-selection during the patent application procedure," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(3), pages 895-909, June.
- Cyril Verluise & Gabriele Cristelli & Kyle Higham & Gaetan de Rassenfosse, 2020.
"The Missing 15 Percent of Patent Citations,"
Working Papers
13, Chair of Science, Technology, and Innovation Policy.
- Verluise, Cyril & Cristelli, Gabriele & Higham, Kyle & de Rassenfosse, Gaetan, 2020. "The Missing 15 Percent of Patent Citations," SocArXiv x78ys, Center for Open Science.
- Tetsuo Wada, 2024. "Experience effects of patent examiners: an empirical study of the career length and citation patterns on triadic patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(10), pages 6333-6348, October.
- Choi, Jaewoong & Yoon, Janghyeok, 2022. "Measuring knowledge exploration distance at the patent level: Application of network embedding and citation analysis," Journal of Informetrics, Elsevier, vol. 16(2).
- Yoon, Naeun & Sohn, So Young, 2024. "Assessment framework for automotive suppliers' technological adaptability in the electric vehicle era," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
- Natalie A. Carlson, 2023. "Differentiation in microenterprises," Strategic Management Journal, Wiley Blackwell, vol. 44(5), pages 1141-1167, May.
- Zhang, Gupeng & Xiong, Libin & Duan, Hongbo & Huang, Dujuan, 2020. "Obtaining certainty vs. creating uncertainty: Does firms’ patent filing strategy work as expected?," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
- Fernández, Ana María & Ferrándiz, Esther & Medina, Jennifer, 2022. "The diffusion of energy technologies. Evidence from renewable, fossil, and nuclear energy patents," MPRA Paper 123361, University Library of Munich, Germany.
More about this item
Keywords
Knowledge graph; Patent citation recommendation; Patent examiner citation; Deep learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:129:y:2024:i:4:d:10.1007_s11192-024-04966-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.