IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v116y2018i2d10.1007_s11192-018-2787-6.html
   My bibliography  Save this article

A quantitative exploration on reasons for citing articles from the perspective of cited authors

Author

Listed:
  • Binglu Wang

    (Peking University)

  • Yi Bu

    (Indiana University)

  • Yang Xu

    (Peking University
    Peking University)

Abstract

Citation is regarded as one of the “norms of science” (Merton in Am Sociol Rev 22(6):635–659, 1957) and is deeply researched by the field of scientometrics. The motivations authors have for citing one another are considered significant and have been the subject of extensive qualitative research such as content analysis, questionnaires, and interviews of citing authors. However, the existing qualitative studies have covered a limited number of samples. To expand the dataset, this paper proposes a quantitative method applied to detecting citation reasons from the angle of citation networks and the attributes of cited authors, including their publication count (the number of single-authored publications, collaborative and first-authored publications as well as collaborative but non-first-authored publications, and number of whole publications), citation count, research topic interests, and gender. By applying the Exponential Random Graph Models (ERGMs), the current study revealed that authors in the field of information retrieval tend to cite those with more single-authored, collaborative and first-authored, and collaborative but not first-authored publications. Besides, in this field, the number of publications, similar topical domains, and same gender are proven to be significantly favorable in selecting references in our experiment.

Suggested Citation

  • Binglu Wang & Yi Bu & Yang Xu, 2018. "A quantitative exploration on reasons for citing articles from the perspective of cited authors," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 675-687, August.
  • Handle: RePEc:spr:scient:v:116:y:2018:i:2:d:10.1007_s11192-018-2787-6
    DOI: 10.1007/s11192-018-2787-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-018-2787-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-018-2787-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Terrence A. Brooks, 1986. "Evidence of complex citer motivations," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 37(1), pages 34-36, January.
    2. Wang, Mingyang & Yu, Guang & Yu, Daren, 2009. "Effect of the age of papers on the preferential attachment in citation networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4273-4276.
    3. Ben‐Ami Lipetz, 1965. "Improvement of the selectivity of citation indexes to science literature through inclusion of citation relationship indicators," American Documentation, Wiley Blackwell, vol. 16(2), pages 81-90, April.
    4. Staša Milojević, 2010. "Modes of collaboration in modern science: Beyond power laws and preferential attachment," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(7), pages 1410-1423, July.
    5. Chaomei Chen, 2012. "Predictive effects of structural variation on citation counts," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(3), pages 431-449, March.
    6. Zhi Li & Qinke Peng & Che Liu, 2016. "Two citation-based indicators to measure latent referential value of papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(3), pages 1299-1313, September.
    7. Wang, Mingyang & Yu, Guang & Yu, Daren, 2008. "Measuring the preferential attachment mechanism in citation networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(18), pages 4692-4698.
    8. Yin, Yian & Wang, Dashun, 2017. "The time dimension of science: Connecting the past to the future," Journal of Informetrics, Elsevier, vol. 11(2), pages 608-621.
    9. Werner Marx & Lutz Bornmann, 2015. "On the causes of subject-specific citation rates in Web of Science," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(2), pages 1823-1827, February.
    10. Kim Kapseon, 2004. "The motivation for citing specific references by social scientists in Korea: The phenomenon of co-existing references," Scientometrics, Springer;Akadémiai Kiadó, vol. 59(1), pages 79-93, January.
    11. McDowell, John M & Smith, Janet Kiholm, 1992. "The Effect of Gender-Sorting on Propensity to Coauthor: Implications for Academic Promotion," Economic Inquiry, Western Economic Association International, vol. 30(1), pages 68-82, January.
    12. Dangzhi Zhao & Andreas Strotmann, 2014. "The knowledge base and research front of information science 2006–2010: An author cocitation and bibliographic coupling analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(5), pages 995-1006, May.
    13. V. Cano, 1989. "Citation behavior: Classification, utility, and location," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 40(4), pages 284-290, July.
    14. Chaomei Chen, 2012. "Predictive effects of structural variation on citation counts," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(3), pages 431-449, March.
    15. Barabási, A.L & Jeong, H & Néda, Z & Ravasz, E & Schubert, A & Vicsek, T, 2002. "Evolution of the social network of scientific collaborations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 311(3), pages 590-614.
    16. Mingyang Wang & Shi Li & Guangsheng Chen, 2017. "Detecting latent referential articles based on their vitality performance in the latest 2 years," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1557-1571, September.
    17. Donald O. Case & Georgeann M. Higgins, 2000. "How can we investigate citation behavior? A study of reasons for citing literature in communication," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 51(7), pages 635-645.
    18. Chenwei Zhang & Yi Bu & Ying Ding & Jian Xu, 2018. "Understanding scientific collaboration: Homophily, transitivity, and preferential attachment," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 69(1), pages 72-86, January.
    19. Derek De Solla Price, 1976. "A general theory of bibliometric and other cumulative advantage processes," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 27(5), pages 292-306, September.
    20. Chandra G. Prabha, 1983. "Some aspects of citation behavior: A pilot study in business administration," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 34(3), pages 202-206, May.
    21. Stanley Wasserman & Philippa Pattison, 1996. "Logit models and logistic regressions for social networks: I. An introduction to Markov graphs andp," Psychometrika, Springer;The Psychometric Society, vol. 61(3), pages 401-425, September.
    22. Mark P. Carpenter & Francis Narin, 1981. "The adequacy of the science citation index (SCI) as an indicator of international scientific activity," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 32(6), pages 430-439, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Jialin & Chen, Hongkan & Liu, Zhibo & Bu, Yi & Gu, Weiye, 2022. "Non-linearity between referencing behavior and citation impact: A large-scale, discipline-level analysis," Journal of Informetrics, Elsevier, vol. 16(3).
    2. Wen Lou & Jiangen He & Lingxin Zhang & Zhijie Zhu & Yongjun Zhu, 2023. "Support behind the scenes: the relationship between acknowledgement, coauthor, and citation in Nobel articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(10), pages 5767-5790, October.
    3. He, Chaocheng & Liu, Fuzhen & Dong, Ke & Wu, Jiang & Zhang, Qingpeng, 2023. "Research on the formation mechanism of research leadership relations: An exponential random graph model analysis approach," Journal of Informetrics, Elsevier, vol. 17(2).
    4. Kaile Gong & Juan Xie & Ying Cheng & Vincent Larivière & Cassidy R. Sugimoto, 2019. "The citation advantage of foreign language references for Chinese social science papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(3), pages 1439-1460, September.
    5. de Carvalho, Gustavo Dambiski Gomes & Sokulski, Carla Cristiane & da Silva, Wesley Vieira & de Carvalho, Hélio Gomes & de Moura, Rafael Vignoli & de Francisco, Antonio Carlos & da Veiga, Claudimar Per, 2020. "Bibliometrics and systematic reviews: A comparison between the Proknow-C and the Methodi Ordinatio," Journal of Informetrics, Elsevier, vol. 14(3).
    6. Raminta Pranckutė, 2021. "Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World," Publications, MDPI, vol. 9(1), pages 1-59, March.
    7. Lu, Wei & Liu, Zhifeng & Huang, Yong & Bu, Yi & Li, Xin & Cheng, Qikai, 2020. "How do authors select keywords? A preliminary study of author keyword selection behavior," Journal of Informetrics, Elsevier, vol. 14(4).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongqing Lyu & Xuanmin Ruan & Juan Xie & Ying Cheng, 2021. "The classification of citing motivations: a meta-synthesis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3243-3264, April.
    2. Mingyang Wang & Shi Li & Guangsheng Chen, 2017. "Detecting latent referential articles based on their vitality performance in the latest 2 years," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1557-1571, September.
    3. Dangzhi Zhao & Andreas Strotmann, 2020. "Deep and narrow impact: introducing location filtered citation counting," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 503-517, January.
    4. Dong, Ke & Wu, Jiang & Wang, Kaili, 2021. "On the inequality of citation counts of all publications of individual authors," Journal of Informetrics, Elsevier, vol. 15(4).
    5. Dangzhi Zhao & Andreas Strotmann, 2020. "Telescopic and panoramic views of library and information science research 2011–2018: a comparison of four weighting schemes for author co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 255-270, July.
    6. Yi Bu & Binglu Wang & Win-bin Huang & Shangkun Che & Yong Huang, 2018. "Using the appearance of citations in full text on author co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 275-289, July.
    7. Teresa H. Jones & Claire Donovan & Steve Hanney, 2012. "Tracing the wider impacts of biomedical research: a literature search to develop a novel citation categorisation technique," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(1), pages 125-134, October.
    8. Chao Lu & Yingyi Zhang & Yong‐Yeol Ahn & Ying Ding & Chenwei Zhang & Dandan Ma, 2020. "Co‐contributorship network and division of labor in individual scientific collaborations," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 71(10), pages 1162-1178, October.
    9. Tahamtan, Iman & Bornmann, Lutz, 2018. "Core elements in the process of citing publications: Conceptual overview of the literature," Journal of Informetrics, Elsevier, vol. 12(1), pages 203-216.
    10. Bikun Chen & Dannan Deng & Zhouyan Zhong & Chengzhi Zhang, 2020. "Exploring linguistic characteristics of highly browsed and downloaded academic articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1769-1790, March.
    11. Wang, Wei & Ren, Jing & Alrashoud, Mubarak & Xia, Feng & Mao, Mengyi & Tolba, Amr, 2020. "Early-stage reciprocity in sustainable scientific collaboration," Journal of Informetrics, Elsevier, vol. 14(3).
    12. Thelwall, Mike, 2016. "The precision of the arithmetic mean, geometric mean and percentiles for citation data: An experimental simulation modelling approach," Journal of Informetrics, Elsevier, vol. 10(1), pages 110-123.
    13. Elizabeth S. Vieira, 2023. "The influence of research collaboration on citation impact: the countries in the European Innovation Scoreboard," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(6), pages 3555-3579, June.
    14. Chao Lu & Ying Ding & Chengzhi Zhang, 2017. "Understanding the impact change of a highly cited article: a content-based citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(2), pages 927-945, August.
    15. Linhong Xu & Kun Ding & Yuan Lin, 2022. "Do negative citations reduce the impact of cited papers?," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(2), pages 1161-1186, February.
    16. He, Chaocheng & Liu, Fuzhen & Dong, Ke & Wu, Jiang & Zhang, Qingpeng, 2023. "Research on the formation mechanism of research leadership relations: An exponential random graph model analysis approach," Journal of Informetrics, Elsevier, vol. 17(2).
    17. Iman Tahamtan & Askar Safipour Afshar & Khadijeh Ahamdzadeh, 2016. "Factors affecting number of citations: a comprehensive review of the literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1195-1225, June.
    18. Hou, Jianhua & Wang, Dongyi & Li, Jing, 2022. "A new method for measuring the originality of academic articles based on knowledge units in semantic networks," Journal of Informetrics, Elsevier, vol. 16(3).
    19. Lina Zhou & Uchechukwuka Amadi & Dongsong Zhang, 2020. "Is Self-Citation Biased? An Investigation via the Lens of Citation Polarity, Density, and Location," Information Systems Frontiers, Springer, vol. 22(1), pages 77-90, February.
    20. Carlos Olmeda-Gómez & Carlos Romá-Mateo & Maria-Antonia Ovalle-Perandones, 2019. "Overview of trends in global epigenetic research (2009–2017)," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1545-1574, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:116:y:2018:i:2:d:10.1007_s11192-018-2787-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.