IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v124y2020i1d10.1007_s11192-020-03462-0.html
   My bibliography  Save this article

Telescopic and panoramic views of library and information science research 2011–2018: a comparison of four weighting schemes for author co-citation analysis

Author

Listed:
  • Dangzhi Zhao

    (University of Alberta)

  • Andreas Strotmann

    (ScienceXplore)

Abstract

This study explores weighted author co-citation analysis (ACA) through a comparison of results from four weighted citation counting methods. The data set used comprises full-text research articles published in four top-tier library and information science (LIS) journals from 2011 to 2018. It finds that in-text frequency-weighted counting performs as well as traditional counting in identifying major dimensions of the LIS field but also shows more detail. Re-citation-based counting appears to highlight well-integrated specialties and weaken the presence of more fragmented ones compared to traditional counting. In-text frequency weighted re-citation counting, expected to highlight “deep” impact, appears to effectively zoom into the field to show intense streams of research within it, but fail to identify major dimensions of the field, essentially providing a telescopic view of the LIS field instead of the panoramic one that the other three methods provide. Measuring deep impact may be interesting and important for research evaluation but fails to retain the broader context that makes the visualizations of research fields so informative. It appears that what may be “noise” when considering impact of individuals can provide the context that allows us to see the forest for the trees when examining intellectual structures of research fields as in the case of traditional ACA.

Suggested Citation

  • Dangzhi Zhao & Andreas Strotmann, 2020. "Telescopic and panoramic views of library and information science research 2011–2018: a comparison of four weighting schemes for author co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 255-270, July.
  • Handle: RePEc:spr:scient:v:124:y:2020:i:1:d:10.1007_s11192-020-03462-0
    DOI: 10.1007/s11192-020-03462-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-020-03462-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-020-03462-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ding, Ying & Liu, Xiaozhong & Guo, Chun & Cronin, Blaise, 2013. "The distribution of references across texts: Some implications for citation analysis," Journal of Informetrics, Elsevier, vol. 7(3), pages 583-592.
    2. Shengbo Liu & Chaomei Chen, 2012. "The proximity of co-citation," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(2), pages 495-511, May.
    3. Terrence A. Brooks, 1986. "Evidence of complex citer motivations," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 37(1), pages 34-36, January.
    4. Anne-Wil Harzing, 2015. "Health warning: might contain multiple personalities—the problem of homonyms in Thomson Reuters Essential Science Indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 2259-2270, December.
    5. Terrence A. Brooks, 1985. "Private acts and public objects: An investigation of citer motivations," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 36(4), pages 223-229, July.
    6. Yi Bu & Binglu Wang & Win-bin Huang & Shangkun Che & Yong Huang, 2018. "Using the appearance of citations in full text on author co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 275-289, July.
    7. Marc Bertin & Iana Atanassova & Yves Gingras & Vincent Larivière, 2016. "The invariant distribution of references in scientific articles," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(1), pages 164-177, January.
    8. Boyack, Kevin W. & van Eck, Nees Jan & Colavizza, Giovanni & Waltman, Ludo, 2018. "Characterizing in-text citations in scientific articles: A large-scale analysis," Journal of Informetrics, Elsevier, vol. 12(1), pages 59-73.
    9. Susan Bonzi, 1982. "Characteristics of a Literature as Predictors of Relatedness Between Cited and Citing Works," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 33(4), pages 208-216, July.
    10. CholMyong Pak & Guang Yu & Weibin Wang, 2018. "A study on the citation situation within the citing paper: citation distribution of references according to mention frequency," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 905-918, March.
    11. Alison Callahan & Stephen Hockema & Gunther Eysenbach, 2010. "Contextual cocitation: Augmenting cocitation analysis and its applications," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(6), pages 1130-1143, June.
    12. Brent D Fegley & Vetle I Torvik, 2013. "Has Large-Scale Named-Entity Network Analysis Been Resting on a Flawed Assumption?," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-16, July.
    13. Zhao, Dangzhi & Strotmann, Andreas, 2008. "Comparing all-author and first-author co-citation analyses of information science," Journal of Informetrics, Elsevier, vol. 2(3), pages 229-239.
    14. Xiaodan Zhu & Peter Turney & Daniel Lemire & André Vellino, 2015. "Measuring academic influence: Not all citations are equal," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(2), pages 408-427, February.
    15. Thelwall, Mike, 2019. "Should citations be counted separately from each originating section?," Journal of Informetrics, Elsevier, vol. 13(2), pages 658-678.
    16. Kevin W. Boyack & Henry Small & Richard Klavans, 2013. "Improving the accuracy of co-citation clustering using full text," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(9), pages 1759-1767, September.
    17. Dangzhi Zhao & Andreas Strotmann, 2008. "Information science during the first decade of the web: An enriched author cocitation analysis," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 59(6), pages 916-937, April.
    18. Andreas Strotmann & Dangzhi Zhao, 2012. "Author name disambiguation: What difference does it make in author-based citation analysis?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(9), pages 1820-1833, September.
    19. Thelwall, Mike, 2019. "The rhetorical structure of science? A multidisciplinary analysis of article headings," Journal of Informetrics, Elsevier, vol. 13(2), pages 555-563.
    20. Dangzhi Zhao & Andreas Strotmann, 2014. "The knowledge base and research front of information science 2006–2010: An author cocitation and bibliographic coupling analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(5), pages 995-1006, May.
    21. Gertrud Herlach, 1978. "Can retrieval of information from citation indexes be simplified? Multiple mention of a reference as a characteristic of the link between cited and citing article," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 29(6), pages 308-310, November.
    22. Kevin W. Boyack & Henry Small & Richard Klavans, 2013. "Improving the accuracy of co‐citation clustering using full text," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 64(9), pages 1759-1767, September.
    23. Dangzhi Zhao & Andreas Strotmann, 2011. "Intellectual structure of stem cell research: a comprehensive author co-citation analysis of a highly collaborative and multidisciplinary field," Scientometrics, Springer;Akadémiai Kiadó, vol. 87(1), pages 115-131, April.
    24. V. Cano, 1989. "Citation behavior: Classification, utility, and location," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 40(4), pages 284-290, July.
    25. Jeong, Yoo Kyung & Song, Min & Ding, Ying, 2014. "Content-based author co-citation analysis," Journal of Informetrics, Elsevier, vol. 8(1), pages 197-211.
    26. Andreas Strotmann & Dangzhi Zhao, 2012. "Author name disambiguation: What difference does it make in author‐based citation analysis?," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(9), pages 1820-1833, September.
    27. Dangzhi Zhao & Andreas Strotmann, 2016. "Dimensions and uncertainties of author citation rankings: Lessons learned from frequency-weighted in-text citation counting," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(3), pages 671-682, March.
    28. Dangzhi Zhao & Andreas Strotmann, 2014. "In-text author citation analysis: Feasibility, benefits, and limitations," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(11), pages 2348-2358, November.
    29. Donald O. Case & Georgeann M. Higgins, 2000. "How can we investigate citation behavior? A study of reasons for citing literature in communication," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 51(7), pages 635-645.
    30. Jinseok Kim & Jana Diesner, 2016. "Distortive effects of initial-based name disambiguation on measurements of large-scale coauthorship networks," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(6), pages 1446-1461, June.
    31. Jane Qiu, 2008. "Scientific publishing: Identity crisis," Nature, Nature, vol. 451(7180), pages 766-767, February.
    32. Aaron Elkiss & Siwei Shen & Anthony Fader & Güneş Erkan & David States & Dragomir Radev, 2008. "Blind men and elephants: What do citation summaries tell us about a research article?," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 59(1), pages 51-62, January.
    33. Hu, Zhigang & Lin, Gege & Sun, Taian & Hou, Haiyan, 2017. "Understanding multiply mentioned references," Journal of Informetrics, Elsevier, vol. 11(4), pages 948-958.
    34. Alison Callahan & Stephen Hockema & Gunther Eysenbach, 2010. "Contextual cocitation: Augmenting cocitation analysis and its applications," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(6), pages 1130-1143, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruhao Zhang & Junpeng Yuan, 2022. "Enhanced author bibliographic coupling analysis using semantic and syntactic citation information," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7681-7706, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dangzhi Zhao & Andreas Strotmann, 2020. "Deep and narrow impact: introducing location filtered citation counting," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 503-517, January.
    2. Kim, Ha Jin & Jeong, Yoo Kyung & Song, Min, 2016. "Content- and proximity-based author co-citation analysis using citation sentences," Journal of Informetrics, Elsevier, vol. 10(4), pages 954-966.
    3. Dongqing Lyu & Xuanmin Ruan & Juan Xie & Ying Cheng, 2021. "The classification of citing motivations: a meta-synthesis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3243-3264, April.
    4. Marc Bertin & Iana Atanassova & Cassidy R. Sugimoto & Vincent Lariviere, 2016. "The linguistic patterns and rhetorical structure of citation context: an approach using n-grams," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1417-1434, December.
    5. Sehrish Iqbal & Saeed-Ul Hassan & Naif Radi Aljohani & Salem Alelyani & Raheel Nawaz & Lutz Bornmann, 2021. "A decade of in-text citation analysis based on natural language processing and machine learning techniques: an overview of empirical studies," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6551-6599, August.
    6. Raja Habib & Muhammad Tanvir Afzal, 2019. "Sections-based bibliographic coupling for research paper recommendation," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 643-656, May.
    7. Liyue Chen & Jielan Ding & Vincent Larivière, 2022. "Measuring the citation context of national self‐references," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(5), pages 671-686, May.
    8. Hamid R. Jamali & Majid Nabavi & Saeid Asadi, 2018. "How video articles are cited, the case of JoVE: Journal of Visualized Experiments," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 1821-1839, December.
    9. Tahamtan, Iman & Bornmann, Lutz, 2018. "Core elements in the process of citing publications: Conceptual overview of the literature," Journal of Informetrics, Elsevier, vol. 12(1), pages 203-216.
    10. Weibin Wang & Zheng Wang & Tian Yu & CholMyong Pak & Guang Yu, 2020. "Research on citation mention times and contributions using a neural network," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2383-2400, December.
    11. Boyack, Kevin W. & van Eck, Nees Jan & Colavizza, Giovanni & Waltman, Ludo, 2018. "Characterizing in-text citations in scientific articles: A large-scale analysis," Journal of Informetrics, Elsevier, vol. 12(1), pages 59-73.
    12. Wang, Shiyun & Mao, Jin & Lu, Kun & Cao, Yujie & Li, Gang, 2021. "Understanding interdisciplinary knowledge integration through citance analysis: A case study on eHealth," Journal of Informetrics, Elsevier, vol. 15(4).
    13. Ruhao Zhang & Junpeng Yuan, 2022. "Enhanced author bibliographic coupling analysis using semantic and syntactic citation information," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7681-7706, December.
    14. Zehra Taşkın & Umut Al, 2018. "A content-based citation analysis study based on text categorization," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(1), pages 335-357, January.
    15. Yi Bu & Binglu Wang & Win-bin Huang & Shangkun Che & Yong Huang, 2018. "Using the appearance of citations in full text on author co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 275-289, July.
    16. Bikun Chen & Dannan Deng & Zhouyan Zhong & Chengzhi Zhang, 2020. "Exploring linguistic characteristics of highly browsed and downloaded academic articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1769-1790, March.
    17. Pak, Chol Myong & Wang, Weibin & Yu, Guang, 2020. "An analysis of in-text citations based on fractional counting," Journal of Informetrics, Elsevier, vol. 14(4).
    18. Maryam Yaghtin & Hajar Sotudeh & Mahdieh Mirzabeigi & Seyed Mostafa Fakhrahmad & Mehdi Mohammadi, 2019. "In quest of new document relations: evaluating co-opinion relations between co-citations and its impact on Information retrieval effectiveness," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 987-1008, May.
    19. Matthias Sebastian Rüdiger & David Antons & Torsten-Oliver Salge, 2021. "The explanatory power of citations: a new approach to unpacking impact in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9779-9809, December.
    20. Toluwase Victor Asubiaro & Isola Ajiferuke, 2022. "Semantic similarity-based credit attribution on citation paths: a method for allocating residual citation to and investigating depth of influence of scientific communications," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6257-6277, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:124:y:2020:i:1:d:10.1007_s11192-020-03462-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.