IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v89y2011i1d10.1007_s11192-011-0430-x.html
   My bibliography  Save this article

Science models as value-added services for scholarly information systems

Author

Listed:
  • Peter Mutschke

    () (GESIS-Leibniz Institute for the Social Sciences)

  • Philipp Mayr

    (GESIS-Leibniz Institute for the Social Sciences)

  • Philipp Schaer

    (GESIS-Leibniz Institute for the Social Sciences)

  • York Sure

    (GESIS-Leibniz Institute for the Social Sciences)

Abstract

The paper introduces scholarly Information Retrieval (IR) as a further dimension that should be considered in the science modeling debate. The IR use case is seen as a validation model of the adequacy of science models in representing and predicting structure and dynamics in science. Particular conceptualizations of scholarly activity and structures in science are used as value-added search services to improve retrieval quality: a co-word model depicting the cognitive structure of a field (used for query expansion), the Bradford law of information concentration, and a model of co-authorship networks (both used for re-ranking search results). An evaluation of the retrieval quality when science model driven services are used turned out that the models proposed actually provide beneficial effects to retrieval quality. From an IR perspective, the models studied are therefore verified as expressive conceptualizations of central phenomena in science. Thus, it could be shown that the IR perspective can significantly contribute to a better understanding of scholarly structures and activities.

Suggested Citation

  • Peter Mutschke & Philipp Mayr & Philipp Schaer & York Sure, 2011. "Science models as value-added services for scholarly information systems," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 349-364, October.
  • Handle: RePEc:spr:scient:v:89:y:2011:i:1:d:10.1007_s11192-011-0430-x
    DOI: 10.1007/s11192-011-0430-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-011-0430-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Linton Freeman, 1980. "The gatekeeper, pair-dependency and structural centrality," Quality & Quantity: International Journal of Methodology, Springer, vol. 14(4), pages 585-592, August.
    2. Loet Leydesdorff & Félix de Moya-Anegón & Vicente P. Guerrero-Bote, 2010. "Journal maps on the basis of Scopus data: A comparison with the Journal Citation Reports of the ISI," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(2), pages 352-369, February.
    3. Kevin W. Boyack & Richard Klavans, 2010. "Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(12), pages 2389-2404, December.
    4. Chen, Chaomei & Chen, Yue & Horowitz, Mark & Hou, Haiyan & Liu, Zeyuan & Pellegrino, Donald, 2009. "Towards an explanatory and computational theory of scientific discovery," Journal of Informetrics, Elsevier, vol. 3(3), pages 191-209.
    5. Barabási, A.L & Jeong, H & Néda, Z & Ravasz, E & Schubert, A & Vicsek, T, 2002. "Evolution of the social network of scientific collaborations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 311(3), pages 590-614.
    6. Peter Mutschke & Anabel Quan Haase, 2001. "Collaboration and Cognitive Structures in Social Science Research Fields. Towards Socio-Cognitive Analysis in Information Systems," Scientometrics, Springer;Akadémiai Kiadó, vol. 52(3), pages 487-502, November.
    7. Leydesdorff, Loet & Wagner, Caroline S., 2008. "International collaboration in science and the formation of a core group," Journal of Informetrics, Elsevier, vol. 2(4), pages 317-325.
    8. Yichuan Jiang, 2008. "Locating active actors in the scientific collaboration communities based on interaction topology analyses," Scientometrics, Springer;Akadémiai Kiadó, vol. 74(3), pages 471-482, March.
    9. Donald deB. Beaver, 2004. "Does collaborative research have greater epistemic authority?," Scientometrics, Springer;Akadémiai Kiadó, vol. 60(3), pages 399-408, August.
    10. Haiyang Lu & Yuqiang Feng, 2009. "A measure of authors’ centrality in co-authorship networks based on the distribution of collaborative relationships," Scientometrics, Springer;Akadémiai Kiadó, vol. 81(2), pages 499-511, November.
    11. Wolfgang Glänzel & Frizo Janssens & Bart Thijs, 2009. "A comparative analysis of publication activity and citation impact based on the core literature in bioinformatics," Scientometrics, Springer;Akadémiai Kiadó, vol. 79(1), pages 109-129, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Kamran Abbasi & Ingo Frommholz, 2015. "Cluster-based polyrepresentation as science modelling approach for information retrieval," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2301-2322, March.
    2. Ameni Kacem & Philipp Mayr, 2018. "Analysis of search stratagem utilisation," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 1383-1400, August.
    3. Peter Mutschke & Philipp Mayr, 2015. "Science models for search: a study on combining scholarly information retrieval and scientometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2323-2345, March.
    4. Alexander Karlsson & Björn Hammarfelt & H. Joe Steinhauer & Göran Falkman & Nasrine Olson & Gustaf Nelhans & Jan Nolin, 2015. "Modeling uncertainty in bibliometrics and information retrieval: an information fusion approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2255-2274, March.
    5. Dietmar Wolfram, 2015. "The symbiotic relationship between information retrieval and informetrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2201-2214, March.
    6. Eunice Maria M. N. Dos Santos & João J. Ferreira, 2017. "Analyzing Informal Entrepreneurship: A Bibliometric Survey," Journal of Developmental Entrepreneurship (JDE), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-20, December.
    7. Estevão, Cristina & Costa, Carlos & Fernandes, Cristina, 2019. "Competitiveness in the tourism sector: A bibliometric analysis," Journal of Spatial and Organizational Dynamics, Cinturs - Research Centre for Tourism, Sustainability and Well-being, University of Algarve, vol. 7(1), pages 4-21.
    8. Philipp Mayr & Andrea Scharnhorst, 2015. "Scientometrics and information retrieval: weak-links revitalized," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2193-2199, March.
    9. Michel Zitt, 2015. "Meso-level retrieval: IR-bibliometrics interplay and hybrid citation-words methods in scientific fields delineation," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2223-2245, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Mutschke & Philipp Mayr, 2015. "Science models for search: a study on combining scholarly information retrieval and scientometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2323-2345, March.
    2. Ortega, José Luis & Aguillo, Isidro F., 2013. "Institutional and country collaboration in an online service of scientific profiles: Google Scholar Citations," Journal of Informetrics, Elsevier, vol. 7(2), pages 394-403.
    3. Georg Groh & Christoph Fuchs, 2011. "Multi-modal social networks for modeling scientific fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(2), pages 569-590, November.
    4. Alireza Abbasi & Mahdi Jalili & Abolghasem Sadeghi-Niaraki, 2018. "Influence of network-based structural and power diversity on research performance," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 579-590, October.
    5. Michel Zitt, 2015. "Meso-level retrieval: IR-bibliometrics interplay and hybrid citation-words methods in scientific fields delineation," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2223-2245, March.
    6. Krzysztof Klincewicz, 2016. "The emergent dynamics of a technological research topic: the case of graphene," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 319-345, January.
    7. Graf, Holger & Kalthaus, Martin, 2018. "International research networks: Determinants of country embeddedness," Research Policy, Elsevier, vol. 47(7), pages 1198-1214.
    8. Alireza Abbasi & Liaquat Hossain & Shahadat Uddin & Kim J. R. Rasmussen, 2011. "Evolutionary dynamics of scientific collaboration networks: multi-levels and cross-time analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(2), pages 687-710, November.
    9. He, Bing & Ding, Ying & Tang, Jie & Reguramalingam, Vignesh & Bollen, Johan, 2013. "Mining diversity subgraph in multidisciplinary scientific collaboration networks: A meso perspective," Journal of Informetrics, Elsevier, vol. 7(1), pages 117-128.
    10. Aparna Basu & Roland Wagner Dobler, 2012. "‘Cognitive mobility’ or migration of authors between fields used in mapping a network of mathematics," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(2), pages 353-368, May.
    11. Ortega, José Luis, 2014. "Influence of co-authorship networks in the research impact: Ego network analyses from Microsoft Academic Search," Journal of Informetrics, Elsevier, vol. 8(3), pages 728-737.
    12. José Luis Ortega & Isidro F. Aguillo, 2010. "Network collaboration in the 6th Framework Programmes: country participation in the health thematic area," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(3), pages 835-844, September.
    13. Abbasi, Alireza & Hossain, Liaquat & Leydesdorff, Loet, 2012. "Betweenness centrality as a driver of preferential attachment in the evolution of research collaboration networks," Journal of Informetrics, Elsevier, vol. 6(3), pages 403-412.
    14. Zaida Chinchilla-Rodríguez & Anuska Ferligoj & Sandra Miguel & Luka Kronegger & Félix Moya-Anegón, 2012. "Blockmodeling of co-authorship networks in library and information science in Argentina: a case study," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(3), pages 699-717, December.
    15. Tur, Elena M. & Azagra-Caro, Joaquín M., 2018. "The coevolution of endogenous knowledge networks and knowledge creation," Journal of Economic Behavior & Organization, Elsevier, vol. 145(C), pages 424-434.
    16. Choong Kwai Fatt & Ephrance Abu Ujum & Kuru Ratnavelu, 2010. "The structure of collaboration in the Journal of Finance," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(3), pages 849-860, December.
    17. Ryan Zelnio, 2012. "Identifying the global core-periphery structure of science," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(2), pages 601-615, May.
    18. Bart Thijs & Edgar Schiebel & Wolfgang Glänzel, 2013. "Do second-order similarities provide added-value in a hybrid approach?," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(3), pages 667-677, September.
    19. José Luis Ortega & Isidro F. Aguillo, 2010. "Shaping the European research collaboration in the 6th Framework Programme health thematic area through network analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(1), pages 377-386, October.
    20. Yan, Erjia & Ding, Ying & Milojević, Staša & Sugimoto, Cassidy R., 2012. "Topics in dynamic research communities: An exploratory study for the field of information retrieval," Journal of Informetrics, Elsevier, vol. 6(1), pages 140-153.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:89:y:2011:i:1:d:10.1007_s11192-011-0430-x. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.