IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v383y2007i2p773-781.html
   My bibliography  Save this article

A highly clustered scale-free network evolved by random walking

Author

Listed:
  • Chen, Qinghua
  • Chen, Shenghui

Abstract

In present paper, we propose a highly clustered weighted network model that incorporates the addition of a new node with some links, new links between existing nodes and the edge's weight dynamical evolution based on weight-dependent walks at each time step. The analytical approach and numerical simulation show that the system grows into a weighted network with the power-law distributions of strength, weight and degree. The weight-dependent walk length l will not influence the strength distribution, but the clustering coefficient of the network is sensitive to l. Particularly, the clustering coefficient is especially high and almost independent of the network size when l=2.

Suggested Citation

  • Chen, Qinghua & Chen, Shenghui, 2007. "A highly clustered scale-free network evolved by random walking," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 773-781.
  • Handle: RePEc:eee:phsmap:v:383:y:2007:i:2:p:773-781
    DOI: 10.1016/j.physa.2007.04.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437107004281
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2007.04.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Qinghua & Shi, Dinghua, 2006. "Markov chains theory for scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(1), pages 121-133.
    2. Bernardo A. Huberman & Lada A. Adamic, 1999. "Growth dynamics of the World-Wide Web," Nature, Nature, vol. 401(6749), pages 131-131, September.
    3. Barabási, Albert-László & Albert, Réka & Jeong, Hawoong, 1999. "Mean-field theory for scale-free random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 272(1), pages 173-187.
    4. Ann E. Krause & Kenneth A. Frank & Doran M. Mason & Robert E. Ulanowicz & William W. Taylor, 2003. "Compartments revealed in food-web structure," Nature, Nature, vol. 426(6964), pages 282-285, November.
    5. Barabási, A.L & Jeong, H & Néda, Z & Ravasz, E & Schubert, A & Vicsek, T, 2002. "Evolution of the social network of scientific collaborations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 311(3), pages 590-614.
    6. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Selen Onel & Abe Zeid & Sagar Kamarthi, 2011. "The structure and analysis of nanotechnology co-author and citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 119-138, October.
    2. Ikeda, N., 2007. "Network formed by traces of random walks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(2), pages 701-713.
    3. Li, Xinna & Wu, Huaiqin & Cao, Jinde, 2023. "Prescribed-time synchronization in networks of piecewise smooth systems via a nonlinear dynamic event-triggered control strategy," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 647-668.
    4. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    5. L. Jarina Banu & P. Balasubramaniam, 2014. "Synchronisation of discrete-time complex networks with randomly occurring uncertainties, nonlinearities and time-delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(7), pages 1427-1450, July.
    6. Chen, Qinghua & Shi, Dinghua, 2004. "The modeling of scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 240-248.
    7. Santiago, A. & Benito, R.M., 2008. "Connectivity degrees in the threshold preferential attachment model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(10), pages 2365-2376.
    8. Ying Duan & Xiuwen Fu & Wenfeng Li & Yu Zhang & Giancarlo Fortino, 2017. "Evolution of Scale-Free Wireless Sensor Networks with Feature of Small-World Networks," Complexity, Hindawi, vol. 2017, pages 1-15, July.
    9. Piccardi, Carlo & Calatroni, Lisa & Bertoni, Fabio, 2010. "Communities in Italian corporate networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5247-5258.
    10. Dangalchev, Chavdar, 2004. "Generation models for scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(3), pages 659-671.
    11. Çavuşoğlu, Abdullah & Türker, İlker, 2013. "Scientific collaboration network of Turkey," Chaos, Solitons & Fractals, Elsevier, vol. 57(C), pages 9-18.
    12. Li, Hong-Li & Hu, Cheng & Jiang, Yao-Lin & Wang, Zuolei & Teng, Zhidong, 2016. "Pinning adaptive and impulsive synchronization of fractional-order complex dynamical networks," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 142-149.
    13. Rezaei, Soghra & Moghaddasi, Hanieh & Darooneh, Amir Hossein, 2018. "Preferential attachment in evolutionary earthquake networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 172-179.
    14. Carlo Piccardi, 2011. "Finding and Testing Network Communities by Lumped Markov Chains," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-13, November.
    15. Santiago, A. & Benito, R.M., 2009. "Robustness of heterogeneous complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(11), pages 2234-2242.
    16. Liu, Tao & Dimirovski, Georgi M. & Zhao, Jun, 2008. "Exponential synchronization of complex delayed dynamical networks with general topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 643-652.
    17. Eocman Lee & Jeho Lee & Jongseok Lee, 2006. "Reconsideration of the Winner-Take-All Hypothesis: Complex Networks and Local Bias," Management Science, INFORMS, vol. 52(12), pages 1838-1848, December.
    18. Mehmet N. Aydin & N. Ziya Perdahci, 0. "Dynamic network analysis of online interactive platform," Information Systems Frontiers, Springer, vol. 0, pages 1-12.
    19. De Montis, Andrea & Ganciu, Amedeo & Cabras, Matteo & Bardi, Antonietta & Mulas, Maurizio, 2019. "Comparative ecological network analysis: An application to Italy," Land Use Policy, Elsevier, vol. 81(C), pages 714-724.
    20. Luka Kronegger & Anuška Ferligoj & Patrick Doreian, 2011. "On the dynamics of national scientific systems," Quality & Quantity: International Journal of Methodology, Springer, vol. 45(5), pages 989-1015, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:383:y:2007:i:2:p:773-781. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.