IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0027028.html
   My bibliography  Save this article

Finding and Testing Network Communities by Lumped Markov Chains

Author

Listed:
  • Carlo Piccardi

Abstract

Identifying communities (or clusters), namely groups of nodes with comparatively strong internal connectivity, is a fundamental task for deeply understanding the structure and function of a network. Yet, there is a lack of formal criteria for defining communities and for testing their significance. We propose a sharp definition that is based on a quality threshold. By means of a lumped Markov chain model of a random walker, a quality measure called “persistence probability” is associated to a cluster, which is then defined as an “-community” if such a probability is not smaller than . Consistently, a partition composed of -communities is an “-partition.” These definitions turn out to be very effective for finding and testing communities. If a set of candidate partitions is available, setting the desired -level allows one to immediately select the -partition with the finest decomposition. Simultaneously, the persistence probabilities quantify the quality of each single community. Given its ability in individually assessing each single cluster, this approach can also disclose single well-defined communities even in networks that overall do not possess a definite clusterized structure.

Suggested Citation

  • Carlo Piccardi, 2011. "Finding and Testing Network Communities by Lumped Markov Chains," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-13, November.
  • Handle: RePEc:plo:pone00:0027028
    DOI: 10.1371/journal.pone.0027028
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0027028
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0027028&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0027028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fagiolo, Giorgio & Reyes, Javier & Schiavo, Stefano, 2008. "On the topological properties of the world trade web: A weighted network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3868-3873.
    2. Gergely Palla & Imre Derényi & Illés Farkas & Tamás Vicsek, 2005. "Uncovering the overlapping community structure of complex networks in nature and society," Nature, Nature, vol. 435(7043), pages 814-818, June.
    3. István A Kovács & Robin Palotai & Máté S Szalay & Peter Csermely, 2010. "Community Landscapes: An Integrative Approach to Determine Overlapping Network Module Hierarchy, Identify Key Nodes and Predict Network Dynamics," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-14, September.
    4. Piccardi, Carlo & Calatroni, Lisa & Bertoni, Fabio, 2010. "Communities in Italian corporate networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5247-5258.
    5. Barigozzi, Matteo & Fagiolo, Giorgio & Mangioni, Giuseppe, 2011. "Identifying the community structure of the international-trade multi-network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2051-2066.
    6. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    7. Jiankui He & Michael W. Deem, 2010. "Structure and Response in the World Trade Network," Papers 1010.0410, arXiv.org.
    8. Ann E. Krause & Kenneth A. Frank & Doran M. Mason & Robert E. Ulanowicz & William W. Taylor, 2003. "Compartments revealed in food-web structure," Nature, Nature, vol. 426(6964), pages 282-285, November.
    9. Garlaschelli, Diego & Loffredo, Maria I., 2005. "Structure and evolution of the world trade network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 138-144.
    10. Šubelj, Lovro & Bajec, Marko, 2011. "Community structure of complex software systems: Analysis and applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(16), pages 2968-2975.
    11. Daniel J. Fenn & Mason A. Porter & Mark McDonald & Stacy Williams & Neil F. Johnson & Nick S. Jones, 2008. "Dynamic communities in multichannel data: An application to the foreign exchange market during the 2007--2008 credit crisis," Papers 0811.3988, arXiv.org, revised Jul 2009.
    12. Andrea Lancichinetti & Filippo Radicchi & José J Ramasco & Santo Fortunato, 2011. "Finding Statistically Significant Communities in Networks," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-18, April.
    13. D. Garlaschelli & M. I. Loffredo, 2005. "Structure and Evolution of the World Trade Network," Papers physics/0502066, arXiv.org, revised May 2005.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Wenjun & Liu, Dong & Liu, Xiao & Pan, Lin, 2013. "Fuzzy overlapping community detection based on local random walk and multidimensional scaling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6578-6586.
    2. Dabaghi Zarandi, Fataneh & Kuchaki Rafsanjani, Marjan, 2018. "Community detection in complex networks using structural similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 882-891.
    3. Alessandro Avellone & Stefano Benati & Rosanna Grassi & Giorgio Rizzini, 2022. "On Finding the Community with Maximum Persistence Probability," Papers 2206.10330, arXiv.org.
    4. Josef Taalbi, 2017. "Development blocks in innovation networks," Journal of Evolutionary Economics, Springer, vol. 27(3), pages 461-501, July.
    5. Rosanna Grassi & Paolo Bartesaghi & Stefano Benati & Gian Paolo Clemente, 2021. "Multi-Attribute Community Detection in International Trade Network," Networks and Spatial Economics, Springer, vol. 21(3), pages 707-733, September.
    6. Carlo Piccardi & Lucia Tajoli, 2018. "Complexity, centralization, and fragility in economic networks," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-13, November.
    7. Xiang, Ju & Hu, Tao & Zhang, Yan & Hu, Ke & Li, Jian-Ming & Xu, Xiao-Ke & Liu, Cui-Cui & Chen, Shi, 2016. "Local modularity for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 451-459.
    8. Carlo Piccardi & Lucia Tajoli, 2015. "Are Preferential Agreements Significant for the World Trade Structure? A Network Community Analysis," Kyklos, Wiley Blackwell, vol. 68(2), pages 220-239, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yuke & Wu, Tianhao & Marshall, Nicholas & Steinerberger, Stefan, 2017. "Extracting geography from trade data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 205-212.
    2. Nobi, Ashadun & Lee, Tae Ho & Lee, Jae Woo, 2020. "Structure of trade flow networks for world commodities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    3. Julian Maluck & Reik V Donner, 2015. "A Network of Networks Perspective on Global Trade," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-24, July.
    4. Marco Dueñas & Giorgio Fagiolo, 2013. "Modeling the International-Trade Network: a gravity approach," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(1), pages 155-178, April.
    5. Rosanna Grassi & Paolo Bartesaghi & Stefano Benati & Gian Paolo Clemente, 2021. "Multi-Attribute Community Detection in International Trade Network," Networks and Spatial Economics, Springer, vol. 21(3), pages 707-733, September.
    6. Paolo Bartesaghi & Gian Paolo Clemente & Rosanna Grassi, 2020. "Community structure in the World Trade Network based on communicability distances," Papers 2001.06356, arXiv.org, revised Jul 2020.
    7. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2010. "Complex stock trading network among investors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4929-4941.
    8. Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2013. "Null models of economic networks: the case of the world trade web," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(1), pages 75-107, April.
    9. Xu, Helian & Cheng, Long, 2019. "The study of the influence of common humanistic relations on international services trade-from the perspective of multi-networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 642-651.
    10. Barigozzi, Matteo & Fagiolo, Giorgio & Mangioni, Giuseppe, 2011. "Identifying the community structure of the international-trade multi-network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2051-2066.
    11. Fraňková, Eva & Fousek, Jan & Kala, Lukáš & Labohý, Jan, 2014. "Transaction network analysis for studying Local Exchange Trading Systems (LETS): Research potentials and limitations," Ecological Economics, Elsevier, vol. 107(C), pages 266-275.
    12. Liu, Linqing & Shen, Mengyun & Sun, Da & Yan, Xiaofei & Hu, Shi, 2022. "Preferential attachment, R&D expenditure and the evolution of international trade networks from the perspective of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    13. Yang, Yu & Poon, Jessie P.H. & Liu, Yi & Bagchi-Sen, Sharmistha, 2015. "Small and flat worlds: A complex network analysis of international trade in crude oil," Energy, Elsevier, vol. 93(P1), pages 534-543.
    14. Stefania Vitali & Stefano Battiston, 2014. "The Community Structure of the Global Corporate Network," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-13, August.
    15. Qing Guan & Haizhong An & Xiaoqing Hao & Xiaoliang Jia, 2016. "The Impact of Countries’ Roles on the International Photovoltaic Trade Pattern: The Complex Networks Analysis," Sustainability, MDPI, vol. 8(4), pages 1-16, March.
    16. Paolo Bartesaghi & Gian Paolo Clemente & Rosanna Grassi, 2022. "Community structure in the World Trade Network based on communicability distances," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 17(2), pages 405-441, April.
    17. Yuke Li & Tianhao Wu & Nicholas Marshall & Stefan Steinerberger, 2016. "Extracting Geography from Trade Data," Papers 1607.05235, arXiv.org, revised Jul 2016.
    18. Gautier M Krings & Jean-François Carpantier & Jean-Charles Delvenne, 2014. "Trade Integration and Trade Imbalances in the European Union: A Network Perspective," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-14, January.
    19. Massimo Riccaboni & Alessandro Rossi & Stefano Schiavo, 2013. "Global networks of trade and bits," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(1), pages 33-56, April.
    20. Massimo Riccaboni & Stefano Schiavo, 2009. "The Structure and Growth of International Trade," Documents de Travail de l'OFCE 2009-24, Observatoire Francais des Conjonctures Economiques (OFCE).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0027028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.