IDEAS home Printed from https://ideas.repec.org/a/spr/joevec/v34y2024i4d10.1007_s00191-024-00872-8.html
   My bibliography  Save this article

A new empirical index to track the technological novelty of inventions: A sector-level analysis

Author

Listed:
  • Yuan Gao

    (University of East Anglia)

  • Emiliya Lazarova

    (University of East Anglia)

Abstract

We introduce the Knowledge Origin Re-Combination Index (KORCI) to measure the ex-ante technological novelty of inventions at the sectoral level. The index is developed through the intertemporal comparison of a sequence of networks, which represents the complex connections between the technological components listed in subsequent cohorts of patent applications. This allows us to quantify the intensity of the recombination of components and the introduction of new ones at the frontier of technological knowledge. Using patent data from three sectors – artificial intelligence, computer technology, and pharmaceuticals – we are the first to document the cyclical nature of the evolution of ex-ante technological novelty of inventions across all three sectors. These evolutionary cycles, however, are not synchronized, and therefore it is unlikely that they are driven by a common innovation engine. Further investigation into the correlation between KORCI and patent growth rates reveals other differences among the sectors in both direction and strength. We conjecture that the relation between the degree of ex-ante technological novelty and invention activities depends on the specific innovation environment of the sector – whether these are process-based or product-based. Our new tool opens opportunities for new empirical research into the evolution of innovation at the sectoral level.

Suggested Citation

  • Yuan Gao & Emiliya Lazarova, 2024. "A new empirical index to track the technological novelty of inventions: A sector-level analysis," Journal of Evolutionary Economics, Springer, vol. 34(4), pages 873-900, December.
  • Handle: RePEc:spr:joevec:v:34:y:2024:i:4:d:10.1007_s00191-024-00872-8
    DOI: 10.1007/s00191-024-00872-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00191-024-00872-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00191-024-00872-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guan, Jiancheng & Liu, Na, 2016. "Exploitative and exploratory innovations in knowledge network and collaboration network: A patent analysis in the technological field of nano-energy," Research Policy, Elsevier, vol. 45(1), pages 97-112.
    2. Roberto Fontana & Alessandro Nuvolari & Bart Verspagen, 2009. "Mapping technological trajectories as patent citation networks. An application to data communication standards," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 18(4), pages 311-336.
    3. Sasaki, Hajime & Sakata, Ichiro, 2021. "Identifying potential technological spin-offs using hierarchical information in international patent classification," Technovation, Elsevier, vol. 100(C).
    4. Luciano Kay & Nils Newman & Jan Youtie & Alan L. Porter & Ismael Rafols, 2014. "Patent overlay mapping: Visualizing technological distance," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(12), pages 2432-2443, December.
    5. Andres Rodriguez-Pose & Riccardo regstdcenzi, 2008. "Research and Development, Spillovers, Innovation Systems, and the Genesis of Regional Growth in Europe," Regional Studies, Taylor & Francis Journals, vol. 42(1), pages 51-67.
    6. Colombelli, Alessandra & Krafft, Jackie & Quatraro, Francesco, 2014. "The emergence of new technology-based sectors in European regions: A proximity-based analysis of nanotechnology," Research Policy, Elsevier, vol. 43(10), pages 1681-1696.
    7. François Lafond & Daniel Kim, 2019. "Long-run dynamics of the U.S. patent classification system," Journal of Evolutionary Economics, Springer, vol. 29(2), pages 631-664, April.
    8. Tom Broekel, 2019. "Using structural diversity to measure the complexity of technologies," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-23, May.
    9. Lee Fleming, 2001. "Recombinant Uncertainty in Technological Search," Management Science, INFORMS, vol. 47(1), pages 117-132, January.
    10. Verhoeven, Dennis & Bakker, Jurriën & Veugelers, Reinhilde, 2016. "Measuring technological novelty with patent-based indicators," Research Policy, Elsevier, vol. 45(3), pages 707-723.
    11. Choi, Jaewoong & Yoon, Janghyeok, 2022. "Measuring knowledge exploration distance at the patent level: Application of network embedding and citation analysis," Journal of Informetrics, Elsevier, vol. 16(2).
    12. Carlo Piccardi, 2011. "Finding and Testing Network Communities by Lumped Markov Chains," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-13, November.
    13. Péter Érdi & Kinga Makovi & Zoltán Somogyvári & Katherine Strandburg & Jan Tobochnik & Péter Volf & László Zalányi, 2013. "Prediction of emerging technologies based on analysis of the US patent citation network," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(1), pages 225-242, April.
    14. Joshua Lerner, 1994. "The Importance of Patent Scope: An Empirical Analysis," RAND Journal of Economics, The RAND Corporation, vol. 25(2), pages 319-333, Summer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choi, Jaewoong & Yoon, Janghyeok, 2022. "Measuring knowledge exploration distance at the patent level: Application of network embedding and citation analysis," Journal of Informetrics, Elsevier, vol. 16(2).
    2. Sajad Ashouri & Anne-Laure Mention & Kosmas X. Smyrnios, 2021. "Anticipation and analysis of industry convergence using patent-level indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5727-5758, July.
    3. Quatraro, Francesco & Scandura, Alessandra, 2020. "Regional patterns of unrelated technological diversification: the role of academic inventors," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 202001, University of Turin.
    4. Dirk Fornahl & Nils Grashof & Alexander Kopka, 2021. "Do not neglect the periphery?! - the emergence and diffusion of radical innovations," Bremen Papers on Economics & Innovation 2102, University of Bremen, Faculty of Business Studies and Economics.
    5. Ying Huang & Donghua Zhu & Yue Qian & Yi Zhang & Alan L. Porter & Yuqin Liu & Ying Guo, 2017. "A hybrid method to trace technology evolution pathways: a case study of 3D printing," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 185-204, April.
    6. Ugo Rizzo & Nicolò Barbieri & Laura Ramaciotti & Demian Iannantuono, 2020. "The division of labour between academia and industry for the generation of radical inventions," The Journal of Technology Transfer, Springer, vol. 45(2), pages 393-413, April.
    7. Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2020. "Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?," Research Policy, Elsevier, vol. 49(2).
    8. Qu, Guannan & Chen, Jin & Zhang, Ruhao & Wang, Luyao & Yang, Yayu, 2023. "Technological search strategy and breakthrough innovation: An integrated approach based on main-path analysis," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    9. Wen, Jinyan & Qualls, William J. & Zeng, Deming, 2021. "To explore or exploit: The influence of inter-firm R&D network diversity and structural holes on innovation outcomes," Technovation, Elsevier, vol. 100(C).
    10. P. G. J. Persoon & R. N. A. Bekkers & F. Alkemade, 2020. "How cumulative is technological knowledge?," Papers 2012.00095, arXiv.org, revised May 2021.
    11. Sun, Bixuan & Kolesnikov, Sergey & Goldstein, Anna & Chan, Gabriel, 2021. "A dynamic approach for identifying technological breakthroughs with an application in solar photovoltaics," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    12. Noh, Heeyong & Lee, Sungjoo, 2020. "What constitutes a promising technology in the era of open innovation? An investigation of patent potential from multiple perspectives," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    13. Ivan Lugovoi & Dimitrios A. Andritsos & Claire Senot, 2022. "Novelty and scope of process innovation: The role of related and unrelated manufacturing experience," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3877-3895, October.
    14. Hötte, Kerstin & Jee, Su Jung, 2022. "Knowledge for a warmer world: A patent analysis of climate change adaptation technologies," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    15. Youngjae Choi & Sanghyun Park & Sungjoo Lee, 2021. "Identifying emerging technologies to envision a future innovation ecosystem: A machine learning approach to patent data," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5431-5476, July.
    16. Yoshimi Okada & Yusuke Naito & Sadao Nagaoka, 2018. "Making the patent scope consistent with the invention: Evidence from Japan," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 27(3), pages 607-625, September.
    17. Yi Zhang & Yue Qian & Ying Huang & Ying Guo & Guangquan Zhang & Jie Lu, 2017. "An entropy-based indicator system for measuring the potential of patents in technological innovation: rejecting moderation," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1925-1946, June.
    18. Chen, Wei & Yan, Yan, 2023. "New components and combinations: The perspective of the internal collaboration networks of scientific teams," Journal of Informetrics, Elsevier, vol. 17(2).
    19. Gianluca Orsatti & Francesco Quatraro & Alessandra Scandura, 2020. "Regional differences in the generation of green technologies: the role of local recombinant capabilities and academic inventors," Carlo Alberto Notebooks 617, Collegio Carlo Alberto.
    20. Jee, Su Jung & Kwon, Minji & Ha, Jung Moon & Sohn, So Young, 2019. "Exploring the forward citation patterns of patents based on the evolution of technology fields," Journal of Informetrics, Elsevier, vol. 13(4).

    More about this item

    Keywords

    Knowledge Origin Re-Combination Index; Ex-ante novelty; Cyclicity; Technological evolution; Patents; Sectoral analysis;
    All these keywords.

    JEL classification:

    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • O34 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Intellectual Property and Intellectual Capital

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joevec:v:34:y:2024:i:4:d:10.1007_s00191-024-00872-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.