IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v42y2021ics1544612321000027.html
   My bibliography  Save this article

Dynamic network analysis of North American financial institutions

Author

Listed:
  • Liu, Shaowen
  • Caporin, Massimiliano
  • Paterlini, Sandra

Abstract

We propose a state-space model to estimate the dynamic network among financial institutions selected from STOXX600 North America in the period from January 2005 to May 2020. We measure the network strength and find that the spillover effect increases significantly during the 2008 financial crisis and the coronavirus pandemic. Using weekly updates of the weight matrix, we detect four time-varying communities. Three communities mostly include companies of the financial supersectors, while the remaining includes Canadian companies. Furthermore, the communities centralities peak during the 2008 financial crisis, while during the COVID-19 period lower values are estimated.

Suggested Citation

  • Liu, Shaowen & Caporin, Massimiliano & Paterlini, Sandra, 2021. "Dynamic network analysis of North American financial institutions," Finance Research Letters, Elsevier, vol. 42(C).
  • Handle: RePEc:eee:finlet:v:42:y:2021:i:c:s1544612321000027
    DOI: 10.1016/j.frl.2021.101921
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612321000027
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2021.101921?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Billio, Monica & Caporin, Massimiliano & Panzica, Roberto & Pelizzon, Loriana, 2023. "The impact of network connectivity on factor exposures, asset pricing, and portfolio diversification," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 196-223.
    2. Torri, Gabriele & Giacometti, Rosella & Paterlini, Sandra, 2018. "Robust and sparse banking network estimation," European Journal of Operational Research, Elsevier, vol. 270(1), pages 51-65.
    3. Bhattacharjee, Arnab & Jensen-Butler, Chris, 2013. "Estimation of the spatial weights matrix under structural constraints," Regional Science and Urban Economics, Elsevier, vol. 43(4), pages 617-634.
    4. Goodell, John W., 2020. "COVID-19 and finance: Agendas for future research," Finance Research Letters, Elsevier, vol. 35(C).
    5. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    6. Li, Wenwei & Hommel, Ulrich & Paterlini, Sandra, 2018. "Network topology and systemic risk: Evidence from the Euro Stoxx market," Finance Research Letters, Elsevier, vol. 27(C), pages 105-112.
    7. Massimiliano Caporin & Paolo Paruolo, 2015. "Proximity-Structured Multivariate Volatility Models," Econometric Reviews, Taylor & Francis Journals, vol. 34(5), pages 559-593, May.
    8. Patrick L. Leoni, 2013. "Hiv/Aids And Banking Stability In Developing Countries," Bulletin of Economic Research, Wiley Blackwell, vol. 65(3), pages 225-237, July.
    9. Rizwan, Muhammad Suhail & Ahmad, Ghufran & Ashraf, Dawood, 2020. "Systemic risk: The impact of COVID-19," Finance Research Letters, Elsevier, vol. 36(C).
    10. Takeshi Kimura & Hiroshi Kobayashi & Jun Muranaga & Hiroshi Ugai, 2003. "The effect of the increase in the monetary base of Japan's economy at zero interest rates: an empirical analysis," BIS Papers chapters, in: Bank for International Settlements (ed.), Monetary policy in a changing environment, volume 19, pages 276-312, Bank for International Settlements.
    11. Scott R. Baker & Nicholas Bloom & Steven J. Davis & Kyle J. Kost & Marco C. Sammon & Tasaneeya Viratyosin, 2020. "The Unprecedented Stock Market Impact of COVID-19," NBER Working Papers 26945, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. García, Javier Sánchez & Rambaud, Salvador Cruz, 2023. "Macrofinancial determinants of volatility transmission in a network of European sovereign debt markets," Finance Research Letters, Elsevier, vol. 53(C).
    2. Raffaele Mattera & Philipp Otto, 2023. "Network log-ARCH models for forecasting stock market volatility," Papers 2303.11064, arXiv.org.
    3. Iyer, Subramanian Rama & Simkins, Betty J., 2022. "COVID-19 and the Economy: Summary of research and future directions," Finance Research Letters, Elsevier, vol. 47(PB).
    4. Juan Li & Keyin Liu & Zixin Yang & Yi Qu, 2023. "Evolution and Impacting Factors of Global Renewable Energy Products Trade Network: An Empirical Investigation Based on ERGM Model," Sustainability, MDPI, vol. 15(11), pages 1-27, May.
    5. Wang, Ze & Gao, Xiangyun & Huang, Shupei & Sun, Qingru & Chen, Zhihua & Tang, Renwu & Di, Zengru, 2022. "Measuring systemic risk contribution of global stock markets: A dynamic tail risk network approach," International Review of Financial Analysis, Elsevier, vol. 84(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bonaccolto, Giovanni & Caporin, Massimiliano & Maillet, Bertrand B., 2022. "Dynamic large financial networks via conditional expected shortfalls," European Journal of Operational Research, Elsevier, vol. 298(1), pages 322-336.
    2. Foglia, Matteo & Addi, Abdelhamid & Angelini, Eliana, 2022. "The Eurozone banking sector in the time of COVID-19: Measuring volatility connectedness," Global Finance Journal, Elsevier, vol. 51(C).
    3. Bonaccolto, Giovanni & Caporin, Massimiliano & Panzica, Roberto, 2019. "Estimation and model-based combination of causality networks among large US banks and insurance companies," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 1-21.
    4. Costa, Antonio & Matos, Paulo & da Silva, Cristiano, 2022. "Sectoral connectedness: New evidence from US stock market during COVID-19 pandemics," Finance Research Letters, Elsevier, vol. 45(C).
    5. Huynh, Toan Luu Duc & Foglia, Matteo & Doukas, John A., 2022. "COVID-19 and Tail-event Driven Network Risk in the Eurozone," Finance Research Letters, Elsevier, vol. 44(C).
    6. Baumöhl, Eduard & Bouri, Elie & Hoang, Thi-Hong-Van & Shahzad, Syed Jawad Hussain & Výrost, Tomáš, 2020. "Increasing systemic risk during the Covid-19 pandemic: A cross-quantilogram analysis of the banking sector," EconStor Preprints 222580, ZBW - Leibniz Information Centre for Economics.
    7. Wu, JunFeng & Zhang, Chao & Chen, Yun, 2022. "Analysis of risk correlations among stock markets during the COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 83(C).
    8. Wang, Gang-Jin & Chen, Yan & Zhu, You & Xie, Chi, 2024. "Systemic risk prediction using machine learning: Does network connectedness help prediction?," International Review of Financial Analysis, Elsevier, vol. 93(C).
    9. Brada, Josef C. & Gajewski, Paweł & Kutan, Ali M., 2021. "Economic resiliency and recovery, lessons from the financial crisis for the COVID-19 pandemic: A regional perspective from Central and Eastern Europe," International Review of Financial Analysis, Elsevier, vol. 74(C).
    10. Addi, Abdelhamid & Bouoiyour, Jamal, 2023. "Interconnectedness and extreme risk: Evidence from dual banking systems," Economic Modelling, Elsevier, vol. 120(C).
    11. Guo, Wen-Chung & Tseng, Ping-Lun, 2023. "COVID-19, bank risk, and capital regulation: The aggregate shock and social distancing," The Quarterly Review of Economics and Finance, Elsevier, vol. 92(C), pages 155-173.
    12. Ahmad, Wasim & Tiwari, Shiv Ratan & Wadhwani, Akshay & Khan, Mohammad Azeem & Bekiros, Stelios, 2023. "Financial networks and systemic risk vulnerabilities: A tale of Indian banks," Research in International Business and Finance, Elsevier, vol. 65(C).
    13. Andrieș, Alin Marius & Ongena, Steven & Sprincean, Nicu, 2021. "The COVID-19 Pandemic and Sovereign Bond Risk," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    14. Katarzyna Czech & Michał Wielechowski & Pavel Kotyza & Irena Benešová & Adriana Laputková, 2020. "Shaking Stability: COVID-19 Impact on the Visegrad Group Countries’ Financial Markets," Sustainability, MDPI, vol. 12(15), pages 1-19, August.
    15. Yang, Xin & Wen, Shigang & Zhao, Xian & Huang, Chuangxia, 2020. "Systemic importance of financial institutions: A complex network perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    16. Godfrey Marozva & Margaret Rutendo Magwedere, 2021. "Nexus Between Stock Returns, Funding Liquidity and COVID-19," SPOUDAI Journal of Economics and Business, SPOUDAI Journal of Economics and Business, University of Piraeus, vol. 71(3-4), pages 86-100, July-Dece.
    17. Torri, Gabriele & Giacometti, Rosella & Tichý, Tomáš, 2021. "Network tail risk estimation in the European banking system," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    18. Aharon, David Y. & Siev, Smadar, 2021. "COVID-19, government interventions and emerging capital markets performance," Research in International Business and Finance, Elsevier, vol. 58(C).
    19. Padhan, Rakesh & Prabheesh, K.P., 2021. "The economics of COVID-19 pandemic: A survey," Economic Analysis and Policy, Elsevier, vol. 70(C), pages 220-237.
    20. Ellis, Scott & Sharma, Satish & Brzeszczyński, Janusz, 2022. "Systemic risk measures and regulatory challenges," Journal of Financial Stability, Elsevier, vol. 61(C).

    More about this item

    Keywords

    Financial network; Dynamic network; COVID19; Financial contagion; Financial crises;
    All these keywords.

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:42:y:2021:i:c:s1544612321000027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.