IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v489y2025ics009630032400626x.html
   My bibliography  Save this article

Change point detection in temporal networks based on graph snapshot similarity measures

Author

Listed:
  • Huang, Xianbin
  • Chen, Liming
  • Chen, Wangyong
  • Hu, Yao

Abstract

This paper addresses the challenge of change point detection in temporal networks, a critical task across various domains, including life sciences and socioeconomic activities. Continuous analysis and problem-solving within dynamic networks are essential in these fields. While much attention has been given to binary cases, this study extends the scope to include change point detection in weighted networks, an important dimension of edge analysis in dynamic networks. We introduce a novel distance metric called the Interval Sum Absolute Difference Distance (ISADD) to measure the distance between two graph snapshots. Additionally, we apply a Gaussian radial basis function to transform this distance into a similarity score between graph snapshots. This similarity score function effectively identifies individual change points. Furthermore, we employ a bisection detection algorithm to extend the method to detect multiple change points. Experimental results on both simulated and real-world data demonstrate the efficacy of the proposed framework.

Suggested Citation

  • Huang, Xianbin & Chen, Liming & Chen, Wangyong & Hu, Yao, 2025. "Change point detection in temporal networks based on graph snapshot similarity measures," Applied Mathematics and Computation, Elsevier, vol. 489(C).
  • Handle: RePEc:eee:apmaco:v:489:y:2025:i:c:s009630032400626x
    DOI: 10.1016/j.amc.2024.129165
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630032400626X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.129165?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yunmeng Lu & Tiezhong Liu & Tiantian Wang, 2021. "Dynamic analysis of emergency inter-organizational communication network under public health emergency: a case study of COVID-19 in Hubei Province of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2003-2026, December.
    2. Chuangxia Huang & Xian Zhao & Renli Su & Xiaoguang Yang & Xin Yang, 2022. "Dynamic network topology and market performance: A case of the Chinese stock market," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1962-1978, April.
    3. Ashish Sen & S. Srivastava, 1975. "On tests for detecting change in mean when variance is unknown," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 27(1), pages 479-486, December.
    4. Li, Huichun & Zhang, Xue & Zhao, Chengli, 2021. "Explaining social events through community evolution on temporal networks," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    5. Al Mugahwi, Mohammed & De La Cruz Cabrera, Omar & Fenu, Caterina & Reichel, Lothar & Rodriguez, Giuseppe, 2021. "Block matrix models for dynamic networks," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    6. Liu, Shaowen & Caporin, Massimiliano & Paterlini, Sandra, 2021. "Dynamic network analysis of North American financial institutions," Finance Research Letters, Elsevier, vol. 42(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xianghua & Zhen, Xiyuan & Qi, Xin & Han, Huichun & Zhang, Long & Han, Zhen, 2023. "Dynamic community detection based on graph convolutional networks and contrastive learning," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    2. Narayanaswamy Balakrishnan & Laurent Bordes & Christian Paroissin & Jean-Christophe Turlot, 2016. "Single change-point detection methods for small lifetime samples," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(5), pages 531-551, July.
    3. Bill Russell & Dooruj Rambaccussing, 2019. "Breaks and the statistical process of inflation: the case of estimating the ‘modern’ long-run Phillips curve," Empirical Economics, Springer, vol. 56(5), pages 1455-1475, May.
    4. Artur F. Tomeczek & Tomasz M. Napiórkowski, 2024. "PageRank and Regression as a Two-Step Approach to Analysing a Network of Nasdaq Firms During a Recession: Insights from Minimum Spanning Tree Topology," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 3, pages 56-69.
    5. Ghazani, Majid Mirzaee & Khosravi, Reza & Caporin, Massimiliano, 2023. "Analyzing interconnection among selected commodities in the 2008 global financial crisis and the COVID-19 pandemic," Resources Policy, Elsevier, vol. 80(C).
    6. Joseph Ngatchou-Wandji & Echarif Elharfaoui & Michel Harel, 2022. "On change-points tests based on two-samples U-Statistics for weakly dependent observations," Statistical Papers, Springer, vol. 63(1), pages 287-316, February.
    7. Paul J. Plummer & Jie Chen, 2014. "A Bayesian approach for locating change points in a compound Poisson process with application to detecting DNA copy number variations," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(2), pages 423-438, February.
    8. Venkata Jandhyala & Stergios Fotopoulos & Ian MacNeill & Pengyu Liu, 2013. "Inference for single and multiple change-points in time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(4), pages 423-446, July.
    9. Nguyen, An Pham Ngoc & Mai, Tai Tan & Bezbradica, Marija & Crane, Martin, 2023. "Volatility and returns connectedness in cryptocurrency markets: Insights from graph-based methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    10. Juan Li & Keyin Liu & Zixin Yang & Yi Qu, 2023. "Evolution and Impacting Factors of Global Renewable Energy Products Trade Network: An Empirical Investigation Based on ERGM Model," Sustainability, MDPI, vol. 15(11), pages 1-27, May.
    11. Brennen T. Fagan & Marina I. Knight & Niall J. MacKay & A. Jamie Wood, 2020. "Change point analysis of historical battle deaths," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 909-933, June.
    12. Li, Boyan & Diao, Xundi, 2023. "Structural break in different stock index markets in China," The North American Journal of Economics and Finance, Elsevier, vol. 65(C).
    13. Fuqi Chen & Rogemar Mamon & Sévérien Nkurunziza, 2018. "Inference for a change-point problem under a generalised Ornstein–Uhlenbeck setting," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(4), pages 807-853, August.
    14. Sandip Sinharay, 2017. "Some Remarks on Applications of Tests for Detecting A Change Point to Psychometric Problems," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1149-1161, December.
    15. Minya Xu & Ping-Shou Zhong & Wei Wang, 2016. "Detecting Variance Change-Points for Blocked Time Series and Dependent Panel Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 213-226, April.
    16. Jon Vilasuso, 1996. "Changes in the duration of economic expansions and contractions in the United States," Applied Economics Letters, Taylor & Francis Journals, vol. 3(12), pages 803-806.
    17. Philip Preuss & Ruprecht Puchstein & Holger Dette, 2015. "Detection of Multiple Structural Breaks in Multivariate Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 654-668, June.
    18. Watson, G. S., 1995. "Detecting a change in the intercept in multiple regression," Statistics & Probability Letters, Elsevier, vol. 23(1), pages 69-72, April.
    19. Ting Wang & Yu Jiang & Jianye Yang & Lei Xing, 2023. "Edge-Based Minimal k -Core Subgraph Search," Mathematics, MDPI, vol. 11(15), pages 1-17, August.
    20. Bian, Zilin & Zuo, Fan & Gao, Jingqin & Chen, Yanyan & Pavuluri Venkata, Sai Sarath Chandra & Duran Bernardes, Suzana & Ozbay, Kaan & Ban, Xuegang (Jeff) & Wang, Jingxing, 2021. "Time lag effects of COVID-19 policies on transportation systems: A comparative study of New York City and Seattle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 269-283.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:489:y:2025:i:c:s009630032400626x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.