IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v69y2014icp525-533.html
   My bibliography  Save this article

Exergy based performance analysis of hydrogen production from rice straw using oxygen blown gasification

Author

Listed:
  • Bhattacharya, Atmadeep
  • Das, Anirban
  • Datta, Amitava

Abstract

An exergetic analysis has been performed on a gasification-based bio-hydrogen generation system consisting of an ASU (air separation unit), a gasifier and a water gas shift reactor. The biomass feed in the system is rice straw. The influences of oxygen percentage in the gasifying agent (in the range 85–99%) and gasifier equivalence ratio (in the range 2–4) on the system exergetic efficiency have been studied. The analysis also investigates the effect of the above mentioned operating parameters on the hydrogen yield and cold gas efficiency. It is observed that, with 95% oxygen in the gasifying agent and with gasifier equivalence ratio of 4.0, the process generates 107.8 g hydrogen per kg of dry biomass (on ash free basis) with a cold gas efficiency of 70%. An increase in gasifier equivalence ratio is found to increase the exergetic efficiency of the system. However, the exergetic efficiency remains almost immune to the change in oxygen percentage in the gasifying agent. The maximum destruction of exergy, in quantitative term, is found to be in the gasifier due to the irreversible chemical reactions occurring there. However, in terms of percentage of exergy input, the highest exergy destruction and exergy loss are observed to occur in the ASU.

Suggested Citation

  • Bhattacharya, Atmadeep & Das, Anirban & Datta, Amitava, 2014. "Exergy based performance analysis of hydrogen production from rice straw using oxygen blown gasification," Energy, Elsevier, vol. 69(C), pages 525-533.
  • Handle: RePEc:eee:energy:v:69:y:2014:i:c:p:525-533
    DOI: 10.1016/j.energy.2014.03.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214003119
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.03.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bhattacharya, Abhishek & Manna, Dulal & Paul, Bireswar & Datta, Amitava, 2011. "Biomass integrated gasification combined cycle power generation with supplementary biomass firing: Energy and exergy based performance analysis," Energy, Elsevier, vol. 36(5), pages 2599-2610.
    2. Datta, Amitava & Ganguly, Ranjan & Sarkar, Luna, 2010. "Energy and exergy analyses of an externally fired gas turbine (EFGT) cycle integrated with biomass gasifier for distributed power generation," Energy, Elsevier, vol. 35(1), pages 341-350.
    3. van der Ham, L.V. & Kjelstrup, S., 2010. "Exergy analysis of two cryogenic air separation processes," Energy, Elsevier, vol. 35(12), pages 4731-4739.
    4. Piekarczyk, Wodzisław & Czarnowska, Lucyna & Ptasiński, Krzysztof & Stanek, Wojciech, 2013. "Thermodynamic evaluation of biomass-to-biofuels production systems," Energy, Elsevier, vol. 62(C), pages 95-104.
    5. Orecchini, Fabio & Bocci, Enrico, 2007. "Biomass to hydrogen for the realization of closed cycles of energy resources," Energy, Elsevier, vol. 32(6), pages 1006-1011.
    6. Saxena, R.C. & Seal, Diptendu & Kumar, Satinder & Goyal, H.B., 2008. "Thermo-chemical routes for hydrogen rich gas from biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(7), pages 1909-1927, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ebrahimi, Armin & Meratizaman, Mousa & Akbarpour Reyhani, Hamed & Pourali, Omid & Amidpour, Majid, 2015. "Energetic, exergetic and economic assessment of oxygen production from two columns cryogenic air separation unit," Energy, Elsevier, vol. 90(P2), pages 1298-1316.
    2. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    3. Aghbashlo, Mortaza & Hosseinpour, Soleiman & Tabatabaei, Meisam & Hosseini, Seyed Sina & Najafpour, Ghasem & Younesi, Habibollah, 2016. "An exergetically-sustainable operational condition of a photo-biohydrogen production system optimized using conventional and innovative fuzzy techniques," Renewable Energy, Elsevier, vol. 94(C), pages 605-618.
    4. Ackah, Ishmael & Kizys, Renatas, 2015. "Green growth in oil producing African countries: A panel data analysis of renewable energy demand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1157-1166.
    5. Rovas, Dimitrios & Zabaniotou, Anastasia, 2015. "Exergy analysis of a small gasification-ICE integrated system for CHP production fueled with Mediterranean agro-food processing wastes: The SMARt-CHP," Renewable Energy, Elsevier, vol. 83(C), pages 510-517.
    6. Aghbashlo, Mortaza & Hosseinpour, Soleiman & Tabatabaei, Meisam & Younesi, Habibollah & Najafpour, Ghasem, 2016. "On the exergetic optimization of continuous photobiological hydrogen production using hybrid ANFIS–NSGA-II (adaptive neuro-fuzzy inference system–non-dominated sorting genetic algorithm-II)," Energy, Elsevier, vol. 96(C), pages 507-520.
    7. Ebrahimi, Armin & Ziabasharhagh, Masoud, 2017. "Optimal design and integration of a cryogenic Air Separation Unit (ASU) with Liquefied Natural Gas (LNG) as heat sink, thermodynamic and economic analyses," Energy, Elsevier, vol. 126(C), pages 868-885.
    8. Minutillo, Mariagiovanna & Perna, Alessandra & Sorce, Alessandro, 2020. "Green hydrogen production plants via biogas steam and autothermal reforming processes: energy and exergy analyses," Applied Energy, Elsevier, vol. 277(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Athari, Hassan & Soltani, Saeed & Seyed Mahmoudi, Seyed Mohammad & Rosen, Marc A. & Morosuk, Tatiana, 2014. "Exergoeconomic analysis of a biomass post-firing combined-cycle power plant," Energy, Elsevier, vol. 77(C), pages 553-561.
    2. Saeed Soltani & Hassan Athari & Marc A. Rosen & Seyed Mohammad Seyed Mahmoudi & Tatiana Morosuk, 2015. "Thermodynamic Analyses of Biomass Gasification Integrated Externally Fired, Post-Firing and Dual-Fuel Combined Cycles," Sustainability, MDPI, vol. 7(2), pages 1-15, January.
    3. Do, Truong Xuan & Lim, Young-il & Yeo, Heejung & Lee, Uen-do & Choi, Young-tai & Song, Jae-hun, 2014. "Techno-economic analysis of power plant via circulating fluidized-bed gasification from woodchips," Energy, Elsevier, vol. 70(C), pages 547-560.
    4. Soltani, S. & Yari, M. & Mahmoudi, S.M.S. & Morosuk, T. & Rosen, M.A., 2013. "Advanced exergy analysis applied to an externally-fired combined-cycle power plant integrated with a biomass gasification unit," Energy, Elsevier, vol. 59(C), pages 775-780.
    5. Smoliński, A. & Howaniec, N. & Stańczyk, K., 2011. "A comparative experimental study of biomass, lignite and hard coal steam gasification," Renewable Energy, Elsevier, vol. 36(6), pages 1836-1842.
    6. Donatella Barisano & Giuseppe Canneto & Francesco Nanna & Antonio Villone & Emanuele Fanelli & Cesare Freda & Massimiliano Grieco & Andrea Lotierzo & Giacinto Cornacchia & Giacobbe Braccio & Vera Marc, 2022. "Investigation of an Intensified Thermo-Chemical Experimental Set-Up for Hydrogen Production from Biomass: Gasification Process Integrated to a Portable Purification System—Part II," Energies, MDPI, vol. 15(13), pages 1-16, June.
    7. Loha, Chanchal & Chattopadhyay, Himadri & Chatterjee, Pradip K., 2011. "Thermodynamic analysis of hydrogen rich synthetic gas generation from fluidized bed gasification of rice husk," Energy, Elsevier, vol. 36(7), pages 4063-4071.
    8. M. Faizal & L. S. Chuah & C. Lee & A. Hameed & J. Lee & M. Shankar, 2019. "Review Of Hydrogen Fuel For Internal Combustion Engines," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(3), pages 35-46, April.
    9. Zhou, Hui & Park, Ah-Hyung Alissa, 2020. "Bio-energy with carbon capture and storage via alkaline thermal Treatment: Production of high purity H2 from wet wheat straw grass with CO2 capture," Applied Energy, Elsevier, vol. 264(C).
    10. Zang, Guiyan & Zhang, Jianan & Jia, Junxi & Lora, Electo Silva & Ratner, Albert, 2020. "Life cycle assessment of power-generation systems based on biomass integrated gasification combined cycles," Renewable Energy, Elsevier, vol. 149(C), pages 336-346.
    11. Peters, Jens F. & Petrakopoulou, Fontina & Dufour, Javier, 2015. "Exergy analysis of synthetic biofuel production via fast pyrolysis and hydroupgrading," Energy, Elsevier, vol. 79(C), pages 325-336.
    12. Gawlik, Bernd Manfred & Sobiecka, Elzbieta & Vaccaro, Stefano & Ciceri, Giovanni, 2007. "Quality management organisation, validation of standards, developments and inquiries for solid-recovered fuels--An overview on the QUOVADIS-Project," Energy Policy, Elsevier, vol. 35(12), pages 6293-6298, December.
    13. Burra, K.G. & Hussein, M.S. & Amano, R.S. & Gupta, A.K., 2016. "Syngas evolutionary behavior during chicken manure pyrolysis and air gasification," Applied Energy, Elsevier, vol. 181(C), pages 408-415.
    14. Leonardo Pierobon & Tuong-Van Nguyen & Andrea Mazzucco & Ulrik Larsen & Fredrik Haglind, 2014. "Part-Load Performance of aWet Indirectly Fired Gas Turbine Integrated with an Organic Rankine Cycle Turbogenerator," Energies, MDPI, vol. 7(12), pages 1-23, December.
    15. Thomas, Rijo Jacob & Ghosh, Parthasarathi & Chowdhury, Kanchan, 2012. "Application of exergy analysis in designing helium liquefiers," Energy, Elsevier, vol. 37(1), pages 207-219.
    16. Yaliwal, V.S. & Banapurmath, N.R. & Hosmath, R.S. & Khandal, S.V. & Budzianowski, Wojciech M., 2016. "Utilization of hydrogen in low calorific value producer gas derived from municipal solid waste and biodiesel for diesel engine power generation application," Renewable Energy, Elsevier, vol. 99(C), pages 1253-1261.
    17. Khoa, T.D. & Shuhaimi, M. & Nam, H.M., 2012. "Application of three dimensional exergy analysis curves for absorption columns," Energy, Elsevier, vol. 37(1), pages 273-280.
    18. Al-Sulaiman, Fahad A. & Dincer, Ibrahim & Hamdullahpur, Feridun, 2012. "Energy and exergy analyses of a biomass trigeneration system using an organic Rankine cycle," Energy, Elsevier, vol. 45(1), pages 975-985.
    19. Raman, P. & Ram, N.K. & Gupta, Ruchi, 2013. "A dual fired downdraft gasifier system to produce cleaner gas for power generation: Design, development and performance analysis," Energy, Elsevier, vol. 54(C), pages 302-314.
    20. Piadehrouhi, Forough & Ghorbani, Bahram & Miansari, Mehdi & Mehrpooya, Mehdi, 2019. "Development of a new integrated structure for simultaneous generation of power and liquid carbon dioxide using solar dish collectors," Energy, Elsevier, vol. 179(C), pages 938-959.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:69:y:2014:i:c:p:525-533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.