IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i6p1836-1842.html
   My bibliography  Save this article

A comparative experimental study of biomass, lignite and hard coal steam gasification

Author

Listed:
  • Smoliński, A.
  • Howaniec, N.
  • Stańczyk, K.

Abstract

In the paper the results of experimental comparative study on steam gasification of lignite, hard coal and energy crops, such as Spartina pectinata, Helianthus tuberosus L., Sida hermaphrodita R. and Miscanthus X Giganteus in a laboratory-scale fixed bed reactor at the temperature of 700 °C were presented. The effectiveness of steam gasification in terms of gas flows, composition and carbon conversion was tested. The ability of coal and biomass to undergo thermochemical transformations was determined based on their chars reactivities. The tested biomass samples were relatively more reactive but produced less synthesis gas and of lower calorific value. Comparison of the reactivities and other physical and chemical properties of coals and biomass, selected based on the gasification process requirements, with a use of the principal component analysis showed that biomass samples differ from the remaining samples due to the highest content of volatiles, oxygen and hydrogen in a sample and the highest amount of carbon dioxide in produced synthesis gas. Hard coals were characterized by the lowest carbon conversion and reactivities R50 and Rmax. Moreover, the negative correlation between the reactivity and the heat of combustion, calorific value, carbon content in a sample and total gas yield produced in the process as well as a positive correlation between R50 and Rmax and volatiles, oxygen content in a sample and carbon dioxide concentration in produced gas were observed.

Suggested Citation

  • Smoliński, A. & Howaniec, N. & Stańczyk, K., 2011. "A comparative experimental study of biomass, lignite and hard coal steam gasification," Renewable Energy, Elsevier, vol. 36(6), pages 1836-1842.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:6:p:1836-1842
    DOI: 10.1016/j.renene.2010.12.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110005586
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.12.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lv, Pengmei & Yuan, Zhenhong & Ma, Longlong & Wu, Chuangzhi & Chen, Yong & Zhu, Jingxu, 2007. "Hydrogen-rich gas production from biomass air and oxygen/steam gasification in a downdraft gasifier," Renewable Energy, Elsevier, vol. 32(13), pages 2173-2185.
    2. Valero, Antonio & Usón, Sergio, 2006. "Oxy-co-gasification of coal and biomass in an integrated gasification combined cycle (IGCC) power plant," Energy, Elsevier, vol. 31(10), pages 1643-1655.
    3. Saxena, R.C. & Seal, Diptendu & Kumar, Satinder & Goyal, H.B., 2008. "Thermo-chemical routes for hydrogen rich gas from biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(7), pages 1909-1927, September.
    4. Smoliński, Adam & Stańczyk, Krzysztof & Howaniec, Natalia, 2010. "Steam gasification of selected energy crops in a fixed bed reactor," Renewable Energy, Elsevier, vol. 35(2), pages 397-404.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jankowski, Krzysztof Józef & Dubis, Bogdan & Sokólski, Mateusz Mikołaj & Załuski, Dariusz & Bórawski, Piotr & Szempliński, Władysław, 2019. "Biomass yield and energy balance of Virginia fanpetals in different production technologies in north-eastern Poland," Energy, Elsevier, vol. 185(C), pages 612-623.
    2. Kang, Tae-Jin & Namkung, Hueon & Xu, Li-Hua & Lee, Sihyun & Kim, Sangdo & Kwon, Hyok-Bo & Kim, Hyung-Taek, 2013. "The drying kinetics of Indonesian low rank coal (IBC) using a lab scale fixed-bed reactor and thermobalance to apply catalytic gasification process," Renewable Energy, Elsevier, vol. 54(C), pages 138-143.
    3. Ramesh Naidu Mandapati & Praveen Ghodke, 2020. "Modeling of gasification process of Indian coal in perspective of underground coal gasification (UCG)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(7), pages 6171-6186, October.
    4. Forster-Carneiro, T. & Berni, M.D. & Dorileo, I.L. & Rostagno, M.A., 2013. "Biorefinery study of availability of agriculture residues and wastes for integrated biorefineries in Brazil," Resources, Conservation & Recycling, Elsevier, vol. 77(C), pages 78-88.
    5. Adam Smoliński & Natalia Howaniec, 2017. "Analysis of Porous Structure Parameters of Biomass Chars Versus Bituminous Coal and Lignite Carbonized at High Pressure and Temperature—A Chemometric Study," Energies, MDPI, vol. 10(10), pages 1-10, September.
    6. Karolina Wojtacha-Rychter & Adam Smoliński, 2018. "Study of the Hazard of Endogenous Fires in Coal Mines—A Chemometric Approach," Energies, MDPI, vol. 11(11), pages 1-10, November.
    7. Angelika Więckol-Ryk & Alicja Krzemień & Adam Smoliński & Fernando Sánchez Lasheras, 2018. "Analysis of Biomass Blend Co-Firing for Post Combustion CO 2 Capture," Sustainability, MDPI, vol. 10(4), pages 1-15, March.
    8. Montuori, Lina & Vargas-Salgado, Carlos & Alcázar-Ortega, Manuel, 2015. "Impact of the throat sizing on the operating parameters in an experimental fixed bed gasifier: Analysis, evaluation and testing," Renewable Energy, Elsevier, vol. 83(C), pages 615-625.
    9. Wei, Juntao & Gong, Yan & Guo, Qinghua & Chen, Xueli & Ding, Lu & Yu, Guangsuo, 2019. "A mechanism investigation of synergy behaviour variations during blended char co-gasification of biomass and different rank coals," Renewable Energy, Elsevier, vol. 131(C), pages 597-605.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio Molino & Vincenzo Larocca & Simeone Chianese & Dino Musmarra, 2018. "Biofuels Production by Biomass Gasification: A Review," Energies, MDPI, vol. 11(4), pages 1-31, March.
    2. Udomsirichakorn, Jakkapong & Salam, P. Abdul, 2014. "Review of hydrogen-enriched gas production from steam gasification of biomass: The prospect of CaO-based chemical looping gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 565-579.
    3. Wang, Sheng & Bi, Xiaotao & Wang, Shudong, 2015. "Thermodynamic analysis of biomass gasification for biomethane production," Energy, Elsevier, vol. 90(P2), pages 1207-1218.
    4. AlNouss, Ahmed & McKay, Gordon & Al-Ansari, Tareq, 2020. "Enhancing waste to hydrogen production through biomass feedstock blending: A techno-economic-environmental evaluation," Applied Energy, Elsevier, vol. 266(C).
    5. M. Faizal & L. S. Chuah & C. Lee & A. Hameed & J. Lee & M. Shankar, 2019. "Review Of Hydrogen Fuel For Internal Combustion Engines," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(3), pages 35-46, April.
    6. Burra, K.G. & Hussein, M.S. & Amano, R.S. & Gupta, A.K., 2016. "Syngas evolutionary behavior during chicken manure pyrolysis and air gasification," Applied Energy, Elsevier, vol. 181(C), pages 408-415.
    7. Przybyla, Grzegorz & Szlek, Andrzej & Haggith, Dale & Sobiesiak, Andrzej, 2016. "Fuelling of spark ignition and homogenous charge compression ignition engines with low calorific value producer gas," Energy, Elsevier, vol. 116(P3), pages 1464-1478.
    8. Ruivo, Luís & Silva, Tiago & Neves, Daniel & Tarelho, Luís & Frade, Jorge, 2023. "Thermodynamic guidelines for improved operation of iron-based catalysts in gasification of biomass," Energy, Elsevier, vol. 268(C).
    9. Patel, Vimal R. & Patel, Darshil & Varia, Nandan S. & Patel, Rajesh N., 2017. "Co-gasification of lignite and waste wood in a pilot-scale (10 kWe) downdraft gasifier," Energy, Elsevier, vol. 119(C), pages 834-844.
    10. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic evaluation of biomass-to-fuels with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 270(C).
    11. Xu, Jie & Wang, Ju & Du, Chunhua & Li, Shuaidan & Liu, Xia, 2020. "Understanding fusibility characteristics and flow properties of the biomass and biomass-coal ash samples," Renewable Energy, Elsevier, vol. 147(P1), pages 1352-1357.
    12. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic comparison of green ammonia production processes," Applied Energy, Elsevier, vol. 259(C).
    13. Yepes Maya, Diego Mauricio & Silva Lora, Electo Eduardo & Andrade, Rubenildo Vieira & Ratner, Albert & Martínez Angel, Juan Daniel, 2021. "Biomass gasification using mixtures of air, saturated steam, and oxygen in a two-stage downdraft gasifier. Assessment using a CFD modeling approach," Renewable Energy, Elsevier, vol. 177(C), pages 1014-1030.
    14. AlNouss, Ahmed & Parthasarathy, Prakash & Shahbaz, Muhammad & Al-Ansari, Tareq & Mackey, Hamish & McKay, Gordon, 2020. "Techno-economic and sensitivity analysis of coconut coir pith-biomass gasification using ASPEN PLUS," Applied Energy, Elsevier, vol. 261(C).
    15. Fugang Zhu & Laihong Shen & Pengcheng Xu & Haoran Yuan & Ming Hu & Jingwei Qi & Yong Chen, 2022. "Numerical Simulation of an Improved Updraft Biomass Gasifier Based on Aspen Plus," IJERPH, MDPI, vol. 19(24), pages 1-11, December.
    16. Panwar, N.L. & Kothari, Richa & Tyagi, V.V., 2012. "Thermo chemical conversion of biomass – Eco friendly energy routes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1801-1816.
    17. Su, Hongcai & Yan, Mi & Wang, Shurong, 2022. "Recent advances in supercritical water gasification of biowaste catalyzed by transition metal-based catalysts for hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    18. Katarzyna Widera & Jacek Grabowski & Adam Smoliński, 2022. "The Application of Statistical Methods in the Construction of a Model for Identifying the Combustion of Waste in Heating Boilers Based on the Elemental Composition of Ashes," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    19. Dries Haeseldonckx & William D’haeseleer, 2010. "Hydrogen from Renewables," Chapters, in: François Lévêque & Jean-Michel Glachant & Julián Barquín & Christian von Hirschhausen & Franziska Ho (ed.), Security of Energy Supply in Europe, chapter 10, Edward Elgar Publishing.
    20. Gai, Chao & Dong, Yuping & Zhang, Tonghui, 2014. "Downdraft gasification of corn straw as a non-woody biomass: Effects of operating conditions on chlorides distribution," Energy, Elsevier, vol. 71(C), pages 638-644.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:6:p:1836-1842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.