IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v94y2016icp605-618.html
   My bibliography  Save this article

An exergetically-sustainable operational condition of a photo-biohydrogen production system optimized using conventional and innovative fuzzy techniques

Author

Listed:
  • Aghbashlo, Mortaza
  • Hosseinpour, Soleiman
  • Tabatabaei, Meisam
  • Hosseini, Seyed Sina
  • Najafpour, Ghasem
  • Younesi, Habibollah

Abstract

The aim of the present study was to perform an exergy-based multi-objective fuzzy optimization of a continuous photobioreactor applied for biohydrogen production from syngas via the water-gas shift reaction by Rhodospirillum rubrum. For this purpose, the conventional and innovative fuzzy optimization techniques coupled with multilayer perceptron (MLP) neural model to optimize the main exergetic performance parameters of the photobioreactor. The MLP neural model was applied to correlate three dependent variables (rational and process exergy efficiencies and normalized exergy destruction) with two independent variables (syngas flow rate and agitation speed). The developed MLP model was then interfaced with three different multi-objective fuzzy optimization systems with independent, interdependent, and locally modified interdependent objectives. The optimization process was aimed at maximizing the rational exergy and process efficiencies, while minimizing the normalized exergy destruction, simultaneously. Generally, the innovative locally modified interdependent objectives fuzzy system showed a better optimization capabilities compared with the other two fuzzy systems. Accordingly, the optimal syngas photo-fermentation for biohydrogen production in the continuous bioreactor corresponded to the agitation speed of 383.34 rpm and syngas flow rate of 13.35 mL/min in order to achieve the normalized exergy destruction of 1.56, rational exergy efficiency of 85.65%, and process exergy efficiency of 21.66%.

Suggested Citation

  • Aghbashlo, Mortaza & Hosseinpour, Soleiman & Tabatabaei, Meisam & Hosseini, Seyed Sina & Najafpour, Ghasem & Younesi, Habibollah, 2016. "An exergetically-sustainable operational condition of a photo-biohydrogen production system optimized using conventional and innovative fuzzy techniques," Renewable Energy, Elsevier, vol. 94(C), pages 605-618.
  • Handle: RePEc:eee:renene:v:94:y:2016:i:c:p:605-618
    DOI: 10.1016/j.renene.2016.03.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116302452
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.03.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bhattacharya, Atmadeep & Das, Anirban & Datta, Amitava, 2014. "Exergy based performance analysis of hydrogen production from rice straw using oxygen blown gasification," Energy, Elsevier, vol. 69(C), pages 525-533.
    2. Hosseini, Seyed Sina & Aghbashlo, Mortaza & Tabatabaei, Meisam & Younesi, Habibollah & Najafpour, Ghasem, 2015. "Exergy analysis of biohydrogen production from various carbon sources via anaerobic photosynthetic bacteria (Rhodospirillum rubrum)," Energy, Elsevier, vol. 93(P1), pages 730-739.
    3. Degerli, Bahar & Nazir, Serap & Sorgüven, Esra & Hitzmann, Bernd & Özilgen, Mustafa, 2015. "Assessment of the energy and exergy efficiencies of farm to fork grain cultivation and bread making processes in Turkey and Germany," Energy, Elsevier, vol. 93(P1), pages 421-434.
    4. Song, Guohui & Xiao, Jun & Zhao, Hao & Shen, Laihong, 2012. "A unified correlation for estimating specific chemical exergy of solid and liquid fuels," Energy, Elsevier, vol. 40(1), pages 164-173.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aghbashlo, Mortaza & Tabatabaei, Meisam & Rastegari, Hajar & Ghaziaskar, Hassan S. & Roodbar Shojaei, Taha, 2018. "On the exergetic optimization of solketalacetin synthesis as a green fuel additive through ketalization of glycerol-derived monoacetin with acetone," Renewable Energy, Elsevier, vol. 126(C), pages 242-253.
    2. Hajjari, Masoumeh & Tabatabaei, Meisam & Aghbashlo, Mortaza & Ghanavati, Hossein, 2017. "A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 445-464.
    3. Majidian, Parastoo & Tabatabaei, Meisam & Zeinolabedini, Mehrshad & Naghshbandi, Mohammad Pooya & Chisti, Yusuf, 2018. "Metabolic engineering of microorganisms for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3863-3885.
    4. Aghbashlo, Mortaza & Hosseinpour, Soleiman & Tabatabaei, Meisam & Dadak, Ali, 2017. "Fuzzy modeling and optimization of the synthesis of biodiesel from waste cooking oil (WCO) by a low power, high frequency piezo-ultrasonic reactor," Energy, Elsevier, vol. 132(C), pages 65-78.
    5. Xiao, Naidong & Chen, Yinguang & Zhou, Wenbing, 2019. "Effect of humic acid on photofermentative hydrogen production of volatile fatty acids derived from wastewater fermentation," Renewable Energy, Elsevier, vol. 131(C), pages 356-363.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aghbashlo, Mortaza & Hosseinpour, Soleiman & Tabatabaei, Meisam & Younesi, Habibollah & Najafpour, Ghasem, 2016. "On the exergetic optimization of continuous photobiological hydrogen production using hybrid ANFIS–NSGA-II (adaptive neuro-fuzzy inference system–non-dominated sorting genetic algorithm-II)," Energy, Elsevier, vol. 96(C), pages 507-520.
    2. Aghbashlo, Mortaza & Tabatabaei, Meisam & Rastegari, Hajar & Ghaziaskar, Hassan S. & Valijanian, Elena, 2018. "Exergy-based optimization of a continuous reactor applied to produce value-added chemicals from glycerol through esterification with acetic acid," Energy, Elsevier, vol. 150(C), pages 351-362.
    3. Aghbashlo, Mortaza & Tabatabaei, Meisam & Karimi, Keikhosro, 2016. "Exergy-based sustainability assessment of ethanol production via Mucor indicus from fructose, glucose, sucrose, and molasses," Energy, Elsevier, vol. 98(C), pages 240-252.
    4. Aghbashlo, Mortaza & Mandegari, Mohsen & Tabatabaei, Meisam & Farzad, Somayeh & Mojarab Soufiyan, Mohamad & Görgens, Johann F., 2018. "Exergy analysis of a lignocellulosic-based biorefinery annexed to a sugarcane mill for simultaneous lactic acid and electricity production," Energy, Elsevier, vol. 149(C), pages 623-638.
    5. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    6. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    7. Charalampos Michalakakis & Jeremy Fouillou & Richard C. Lupton & Ana Gonzalez Hernandez & Jonathan M. Cullen, 2021. "Calculating the chemical exergy of materials," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 274-287, April.
    8. Mousavi, Seyed Ali & Toopshekan, Ashkan & Mehrpooya, Mehdi & Delpisheh, Mostafa, 2023. "Comprehensive exergetic performance assessment and techno-financial optimization of off-grid hybrid renewable configurations with various dispatch strategies and solar tracking systems," Renewable Energy, Elsevier, vol. 210(C), pages 40-63.
    9. Siwen Zhang & Haiming Gu & Jing Qian & Wioletta Raróg-Pilecka & Yuan Wang & Qijing Wu & Hao Zhao, 2023. "Techno-Economic Assessment of High-Safety and Cost-Effective Syngas Produced by O 2 -Enriched Air Gasification with 40–70% O 2 Purity," Energies, MDPI, vol. 16(8), pages 1-13, April.
    10. Silva Ortiz, Pablo & de Oliveira, Silvio, 2014. "Exergy analysis of pretreatment processes of bioethanol production based on sugarcane bagasse," Energy, Elsevier, vol. 76(C), pages 130-138.
    11. Qin, Shiyue & Chang, Shiyan & Yao, Qiang, 2018. "Modeling, thermodynamic and techno-economic analysis of coal-to-liquids process with different entrained flow coal gasifiers," Applied Energy, Elsevier, vol. 229(C), pages 413-432.
    12. Oliveira, V.B. & Simões, M. & Melo, L.F. & Pinto, A.M.F.R., 2013. "A 1D mathematical model for a microbial fuel cell," Energy, Elsevier, vol. 61(C), pages 463-471.
    13. Bartłomiej Bajan & Joanna Łukasiewicz & Aldona Mrówczyńska-Kamińska, 2021. "Energy Consumption and Its Structures in Food Production Systems of the Visegrad Group Countries Compared with EU-15 Countries," Energies, MDPI, vol. 14(13), pages 1-24, July.
    14. Flórez-Orrego, Daniel & de Oliveira Junior, Silvio, 2016. "On the efficiency, exergy costs and CO2 emission cost allocation for an integrated syngas and ammonia production plant," Energy, Elsevier, vol. 117(P2), pages 341-360.
    15. Fallahi, Alireza & Farzad, Somayeh & Mohtasebi, Seyed Saeid & Mandegari, Mohsen & Görgens, Johann F. & Gupta, Vijai Kumar & Lam, Su Shiung & Tabatabaei, Meisam & Aghbashlo, Mortaza, 2021. "Sustainability assessment of sugarcane residues valorization to biobutadiene by exergy and exergoeconomic evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    16. Qin, Shiyue & Chang, Shiyan, 2017. "Modeling, thermodynamic and techno-economic analysis of coke production process with waste heat recovery," Energy, Elsevier, vol. 141(C), pages 435-450.
    17. Huang, Y.W. & Chen, M.Q. & Li, Y. & Guo, J., 2016. "Modeling of chemical exergy of agricultural biomass using improved general regression neural network," Energy, Elsevier, vol. 114(C), pages 1164-1175.
    18. Martínez González, Aldemar & Silva Lora, Electo Eduardo & Escobar Palacio, José Carlos, 2019. "Syngas production from oil sludge gasification and its potential use in power generation systems: An energy and exergy analysis," Energy, Elsevier, vol. 169(C), pages 1175-1190.
    19. Takla, M. & Kamfjord, N.E. & Tveit, Halvard & Kjelstrup, S., 2013. "Energy and exergy analysis of the silicon production process," Energy, Elsevier, vol. 58(C), pages 138-146.
    20. Zhang, Zhiping & Ai, Fuke & Zhang, Haorui & Zhang, Huan & Zhu, Shengnan & Zhang, Quanguo & Li, Yameng, 2023. "Synergetic effect evaluation of light and mass transfer enhancement strategies on photo fermentative biohydrogen production process: Illumination, shake, and high solid level," Energy, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:94:y:2016:i:c:p:605-618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.