IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v70y2014icp547-560.html
   My bibliography  Save this article

Techno-economic analysis of power plant via circulating fluidized-bed gasification from woodchips

Author

Listed:
  • Do, Truong Xuan
  • Lim, Young-il
  • Yeo, Heejung
  • Lee, Uen-do
  • Choi, Young-tai
  • Song, Jae-hun

Abstract

Biomass has emerged in the renewable energy area with high potential to contribute to the energy needs in both the industrialized and developing countries. The objective of this study is to evaluate and compare the economic feasibility of three different configurations of a woodchips power plant based on the circulating fluidized-bed (CFB) gasification: (1) a gas engine, (2) a gas turbine, and (3) gas & steam turbines. A comprehensive model of the power plant was developed employing the process simulator, Aspen Plus. The economic feasibility was analyzed in terms of the payback period (PBP), return on investment (ROI), and discount cash flow rate of return (DCFROR). It was proposed that the power plant has an economic benefit for plant sizes of over 150 t/d of dry woodchips in all the three cases. The gas engine was a better choice for the power plant sizes smaller than 200 t/d or 22 MWe, while the gas & steam turbines had the highest benefit at big plant sizes over 200 t/d. A sensitivity analysis was performed for the 150 t/d plant to identify key variables that have a strong impact on DCFROR. The total capital investment (TCI) and plant size had a major influence on DCFROR.

Suggested Citation

  • Do, Truong Xuan & Lim, Young-il & Yeo, Heejung & Lee, Uen-do & Choi, Young-tai & Song, Jae-hun, 2014. "Techno-economic analysis of power plant via circulating fluidized-bed gasification from woodchips," Energy, Elsevier, vol. 70(C), pages 547-560.
  • Handle: RePEc:eee:energy:v:70:y:2014:i:c:p:547-560
    DOI: 10.1016/j.energy.2014.04.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214004617
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.04.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bang-Møller, C. & Rokni, M. & Elmegaard, B., 2011. "Exergy analysis and optimization of a biomass gasification, solid oxide fuel cell and micro gas turbine hybrid system," Energy, Elsevier, vol. 36(8), pages 4740-4752.
    2. Bridgwater, A. V. & Toft, A. J. & Brammer, J. G., 2002. "A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(3), pages 181-246, September.
    3. Tock, Laurence & Maréchal, François, 2012. "Co-production of hydrogen and electricity from lignocellulosic biomass: Process design and thermo-economic optimization," Energy, Elsevier, vol. 45(1), pages 339-349.
    4. Göransson, Kristina & Söderlind, Ulf & He, Jie & Zhang, Wennan, 2011. "Review of syngas production via biomass DFBGs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 482-492, January.
    5. Hauk, Sebastian & Knoke, Thomas & Wittkopf, Stefan, 2014. "Economic evaluation of short rotation coppice systems for energy from biomass—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 435-448.
    6. Fischer, Barry & Pigneri, Attilio, 2011. "Potential for electrification from biomass gasification in Vanuatu," Energy, Elsevier, vol. 36(3), pages 1640-1651.
    7. Datta, Amitava & Ganguly, Ranjan & Sarkar, Luna, 2010. "Energy and exergy analyses of an externally fired gas turbine (EFGT) cycle integrated with biomass gasifier for distributed power generation," Energy, Elsevier, vol. 35(1), pages 341-350.
    8. Bhattacharya, Abhishek & Manna, Dulal & Paul, Bireswar & Datta, Amitava, 2011. "Biomass integrated gasification combined cycle power generation with supplementary biomass firing: Energy and exergy based performance analysis," Energy, Elsevier, vol. 36(5), pages 2599-2610.
    9. Bang-Møller, C. & Rokni, M. & Elmegaard, B. & Ahrenfeldt, J. & Henriksen, U.B., 2013. "Decentralized combined heat and power production by two-stage biomass gasification and solid oxide fuel cells," Energy, Elsevier, vol. 58(C), pages 527-537.
    10. Cocco, Daniele & Serra, Fabio & Tola, Vittorio, 2013. "Assessment of energy and economic benefits arising from syngas storage in IGCC power plants," Energy, Elsevier, vol. 58(C), pages 635-643.
    11. Yılmaz, Sebnem & Selim, Hasan, 2013. "A review on the methods for biomass to energy conversion systems design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 420-430.
    12. Aydin, Hakan, 2013. "Exergetic sustainability analysis of LM6000 gas turbine power plant with steam cycle," Energy, Elsevier, vol. 57(C), pages 766-774.
    13. Ngo, Son Ich & Nguyen, Thanh D.B. & Lim, Young-Il & Song, Byung-Ho & Lee, Uen-Do & Choi, Young-Tai & Song, Jae-Hun, 2011. "Performance evaluation for dual circulating fluidized-bed steam gasifier of biomass using quasi-equilibrium three-stage gasification model," Applied Energy, Elsevier, vol. 88(12), pages 5208-5220.
    14. Klaassen, R.E. & Patel, M.K., 2013. "District heating in the Netherlands today: A techno-economic assessment for NGCC-CHP (Natural Gas Combined Cycle combined heat and power)," Energy, Elsevier, vol. 54(C), pages 63-73.
    15. Kucukvar, Murat & Tatari, Omer, 2011. "A comprehensive life cycle analysis of cofiring algae in a coal power plant as a solution for achieving sustainable energy," Energy, Elsevier, vol. 36(11), pages 6352-6357.
    16. Klimantos, P. & Koukouzas, N. & Katsiadakis, A. & Kakaras, E., 2009. "Air-blown biomass gasification combined cycles (BGCC): System analysis and economic assessment," Energy, Elsevier, vol. 34(5), pages 708-714.
    17. Pihl, Erik & Heyne, Stefan & Thunman, Henrik & Johnsson, Filip, 2010. "Highly efficient electricity generation from biomass by integration and hybridization with combined cycle gas turbine (CCGT) plants for natural gas," Energy, Elsevier, vol. 35(10), pages 4042-4052.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vu, Thang Toan & Lim, Young-Il & Song, Daesung & Mun, Tae-Young & Moon, Ji-Hong & Sun, Dowon & Hwang, Yoon-Tae & Lee, Jae-Goo & Park, Young Cheol, 2020. "Techno-economic analysis of ultra-supercritical power plants using air- and oxy-combustion circulating fluidized bed with and without CO2 capture," Energy, Elsevier, vol. 194(C).
    2. Kenji Koido & Eri Takata & Takashi Yanagida & Hirofumi Kuboyama, 2022. "Techno-Economic Assessment of Heat Supply Systems in Woodchip Drying Bases for Wood Gasification Combined Heat and Power," Sustainability, MDPI, vol. 14(24), pages 1-14, December.
    3. Do, Truong Xuan & Lim, Young-il & Cho, Hyodeuk & Shim, Jaehui & Yoo, Jeongkeun & Rho, Kyutai & Choi, Seong-Geun & Park, Chanwoo & Park, Byeong-Yun, 2018. "Techno-economic analysis of fry-drying and torrefaction plant for bio-solid fuel production," Renewable Energy, Elsevier, vol. 119(C), pages 45-53.
    4. Mohamed, Usama & Zhao, Ying-jie & Yi, Qun & Shi, Li-juan & Wei, Guo-qing & Nimmo, William, 2021. "Evaluation of life cycle energy, economy and CO2 emissions for biomass chemical looping gasification to power generation," Renewable Energy, Elsevier, vol. 176(C), pages 366-387.
    5. He, Jiaxin & Liu, Ying & Lin, Boqiang, 2018. "Should China support the development of biomass power generation?," Energy, Elsevier, vol. 163(C), pages 416-425.
    6. Jaime Guerrero & Simón Sala & Alejandro Fresneda-Cruz & Irene Bolea & Alessandro A. Carmona-Martínez & Clara Jarauta-Córdoba, 2023. "Techno-Economic Feasibility of Biomass Gasification for the Decarbonisation of Energy-Intensive Industries," Energies, MDPI, vol. 16(17), pages 1-13, August.
    7. Zhang, Qi & Zhao, Xiaoyu & Lu, Hongyou & Ni, Tuanjie & Li, Yu, 2017. "Waste energy recovery and energy efficiency improvement in China’s iron and steel industry," Applied Energy, Elsevier, vol. 191(C), pages 502-520.
    8. Do, Truong Xuan & Lim, Young-il, 2016. "Techno-economic comparison of three energy conversion pathways from empty fruit bunches," Renewable Energy, Elsevier, vol. 90(C), pages 307-318.
    9. Zhao, Ying-jie & Zhang, Yu-ke & Cui, Yang & Duan, Yuan-yuan & Huang, Yi & Wei, Guo-qiang & Mohamed, Usama & Shi, Li-juan & Yi, Qun & Nimmo, William, 2022. "Pinch combined with exergy analysis for heat exchange network and techno-economic evaluation of coal chemical looping combustion power plant with CO2 capture," Energy, Elsevier, vol. 238(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ud Din, Zia & Zainal, Z.A., 2016. "Biomass integrated gasification–SOFC systems: Technology overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1356-1376.
    2. Athari, Hassan & Soltani, Saeed & Seyed Mahmoudi, Seyed Mohammad & Rosen, Marc A. & Morosuk, Tatiana, 2014. "Exergoeconomic analysis of a biomass post-firing combined-cycle power plant," Energy, Elsevier, vol. 77(C), pages 553-561.
    3. Sharafi laleh, Shayan & Fatemi Alavi, Seyed Hamed & Soltani, Saeed & Mahmoudi, S.M.S. & Rosen, Marc A., 2024. "A novel supercritical carbon dioxide combined cycle fueled by biomass: Thermodynamic assessment," Renewable Energy, Elsevier, vol. 222(C).
    4. Ud Din, Zia & Zainal, Z.A., 2017. "The fate of SOFC anodes under biomass producer gas contaminants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1050-1066.
    5. Saeed Soltani & Hassan Athari & Marc A. Rosen & Seyed Mohammad Seyed Mahmoudi & Tatiana Morosuk, 2015. "Thermodynamic Analyses of Biomass Gasification Integrated Externally Fired, Post-Firing and Dual-Fuel Combined Cycles," Sustainability, MDPI, vol. 7(2), pages 1-15, January.
    6. Halkos, George E. & Tzeremes, Nickolaos G., 2014. "The effect of electricity consumption from renewable sources on countries׳ economic growth levels: Evidence from advanced, emerging and developing economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 166-173.
    7. Kim, Young-Doo & Yang, Chang-Won & Kim, Beom-Jong & Moon, Ji-Hong & Jeong, Jae-Yong & Jeong, Soo-Hwa & Lee, See-Hoon & Kim, Jae-Ho & Seo, Myung-Won & Lee, Sang-Bong & Kim, Jae-Kon & Lee, Uen-Do, 2016. "Fischer–tropsch diesel production and evaluation as alternative automotive fuel in pilot-scale integrated biomass-to-liquid process," Applied Energy, Elsevier, vol. 180(C), pages 301-312.
    8. Wang, Jiangjiang & Mao, Tianzhi & Wu, Jing, 2017. "Modified exergoeconomic modeling and analysis of combined cooling heating and power system integrated with biomass-steam gasification," Energy, Elsevier, vol. 139(C), pages 871-882.
    9. Patel, Madhumita & Zhang, Xiaolei & Kumar, Amit, 2016. "Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1486-1499.
    10. Tock, Laurence & Maréchal, François, 2012. "Co-production of hydrogen and electricity from lignocellulosic biomass: Process design and thermo-economic optimization," Energy, Elsevier, vol. 45(1), pages 339-349.
    11. Naraharisetti, Pavan Kumar & Lakshminarayanan, S. & Karimi, I.A., 2014. "Design of biomass and natural gas based IGFC using multi-objective optimization," Energy, Elsevier, vol. 73(C), pages 635-652.
    12. Wegener, Moritz & Malmquist, Anders & Isalgué, Antonio & Martin, Andrew, 2018. "Biomass-fired combined cooling, heating and power for small scale applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 392-410.
    13. Asadullah, Mohammad, 2014. "Barriers of commercial power generation using biomass gasification gas: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 201-215.
    14. Antonio Molino & Vincenzo Larocca & Simeone Chianese & Dino Musmarra, 2018. "Biofuels Production by Biomass Gasification: A Review," Energies, MDPI, vol. 11(4), pages 1-31, March.
    15. Soltani, S. & Yari, M. & Mahmoudi, S.M.S. & Morosuk, T. & Rosen, M.A., 2013. "Advanced exergy analysis applied to an externally-fired combined-cycle power plant integrated with a biomass gasification unit," Energy, Elsevier, vol. 59(C), pages 775-780.
    16. Kotowicz, Janusz & Sobolewski, Aleksander & Iluk, Tomasz, 2013. "Energetic analysis of a system integrated with biomass gasification," Energy, Elsevier, vol. 52(C), pages 265-278.
    17. Leonardo Pierobon & Tuong-Van Nguyen & Andrea Mazzucco & Ulrik Larsen & Fredrik Haglind, 2014. "Part-Load Performance of aWet Indirectly Fired Gas Turbine Integrated with an Organic Rankine Cycle Turbogenerator," Energies, MDPI, vol. 7(12), pages 1-23, December.
    18. Samiran, Nor Afzanizam & Jaafar, Mohammad Nazri Mohd & Ng, Jo-Han & Lam, Su Shiung & Chong, Cheng Tung, 2016. "Progress in biomass gasification technique – With focus on Malaysian palm biomass for syngas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1047-1062.
    19. Athari, Hassan & Soltani, Saeed & Rosen, Marc A. & Gavifekr, Masood Kordoghli & Morosuk, Tatiana, 2016. "Exergoeconomic study of gas turbine steam injection and combined power cycles using fog inlet cooling and biomass fuel," Renewable Energy, Elsevier, vol. 96(PA), pages 715-726.
    20. Motta, Ingrid Lopes & Miranda, Nahieh Toscano & Maciel Filho, Rubens & Wolf Maciel, Maria Regina, 2018. "Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 998-1023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:70:y:2014:i:c:p:547-560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.