IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i24p16878-d1005126.html
   My bibliography  Save this article

Techno-Economic Assessment of Heat Supply Systems in Woodchip Drying Bases for Wood Gasification Combined Heat and Power

Author

Listed:
  • Kenji Koido

    (Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan)

  • Eri Takata

    (Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan)

  • Takashi Yanagida

    (Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan)

  • Hirofumi Kuboyama

    (Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan)

Abstract

Among decentralized small-scale biomass energy sources with the potential to revitalize local communities, combined heat and power (CHP) from gasification is promising in terms of its high power generation efficiency. Still, it has yet to achieve operational stability, in part due to the variation in the moisture content of the woodchips used as fuel. In this study, a technical and economic evaluation was performed to establish a center for the efficient production of high-quality dry woodchips within a sawmill and to determine the technical characteristics and economic viability of a system using gasification CHP, wood waste-fired boilers or an organic Rankine cycle (ORC) as heat sources. The results showed that the net present values (NPVs) of gasified CHP, wood waste-fired boilers and ORC were −186 million, −402 million, and −103 million JPY, respectively. None of them were deemed profitable. Therefore, a sensitivity analysis was performed to determine the impact of low-quality wood prices, dry woodchips, heavy oil A, and the grid electricity charge on the NPV. The improvement of the low-quality wood price and dry woodchips sales price was effective for heat supply by gasification CHP and ORC turbines, and their combination was effective for woodchip-fired boilers.

Suggested Citation

  • Kenji Koido & Eri Takata & Takashi Yanagida & Hirofumi Kuboyama, 2022. "Techno-Economic Assessment of Heat Supply Systems in Woodchip Drying Bases for Wood Gasification Combined Heat and Power," Sustainability, MDPI, vol. 14(24), pages 1-14, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16878-:d:1005126
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/24/16878/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/24/16878/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ulises Flores Hernández & Dirk Jaeger & Jorge Islas Samperio, 2018. "Evaluating Economic Alternatives for Wood Energy Supply Based on Stochastic Simulation," Sustainability, MDPI, vol. 10(4), pages 1-19, April.
    2. Do, Truong Xuan & Lim, Young-il & Yeo, Heejung & Lee, Uen-do & Choi, Young-tai & Song, Jae-hun, 2014. "Techno-economic analysis of power plant via circulating fluidized-bed gasification from woodchips," Energy, Elsevier, vol. 70(C), pages 547-560.
    3. Kalina, Jacek, 2017. "Techno-economic assessment of small-scale integrated biomass gasification dual fuel combined cycle power plant," Energy, Elsevier, vol. 141(C), pages 2499-2507.
    4. Can Coskun & Murad Bayraktar & Zuhal Oktay & Ibrahim Dincer, 2009. "Energy and exergy analyses of an industrial wood chips drying process," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 4(4), pages 224-229, July.
    5. Sahoo, Kamalakanta & Bilek, E.M. (Ted) & Mani, Sudhagar, 2018. "Techno-economic and environmental assessments of storing woodchips and pellets for bioenergy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 27-39.
    6. Giulio Allesina & Simone Pedrazzi, 2021. "Barriers to Success: A Technical Review on the Limits and Possible Future Roles of Small Scale Gasifiers," Energies, MDPI, vol. 14(20), pages 1-23, October.
    7. Angelo Del Giudice & Andrea Acampora & Enrico Santangelo & Luigi Pari & Simone Bergonzoli & Ettore Guerriero & Francesco Petracchini & Marco Torre & Valerio Paolini & Francesco Gallucci, 2019. "Wood Chip Drying through the Using of a Mobile Rotary Dryer," Energies, MDPI, vol. 12(9), pages 1-16, April.
    8. Mazzucco, Andrea & Rokni, Masoud, 2014. "Thermo-economic analysis of a solid oxide fuel cell and steam injected gas turbine plant integrated with woodchips gasification," Energy, Elsevier, vol. 76(C), pages 114-129.
    9. Ahmed M. Salem & Harnek S. Dhami & Manosh C. Paul, 2022. "Syngas Production and Combined Heat and Power from Scottish Agricultural Waste Gasification—A Computational Study," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Yousaf Arshad & Muhammad Azam Saeed & Muhammad Wasim Tahir & Ahsan Raza & Anam Suhail Ahmad & Fasiha Tahir & Bartłomiej Borkowski & Tadeusz Mączka & Lukasz Niedzwiecki, 2023. "Role of Experimental, Modeling, and Simulation Studies of Plasma in Sustainable Green Energy," Sustainability, MDPI, vol. 15(19), pages 1-35, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arkadiusz Dyjakon & Tomasz Noszczyk, 2019. "The Influence of Freezing Temperature Storage on the Mechanical Durability of Commercial Pellets from Biomass," Energies, MDPI, vol. 12(13), pages 1-13, July.
    2. Khouya, Ahmed, 2021. "Modelling and analysis of a hybrid solar dryer for woody biomass," Energy, Elsevier, vol. 216(C).
    3. Yi, Qun & Gong, Min-Hui & Huang, Yi & Feng, Jie & Hao, Yan-Hong & Zhang, Ji-Long & Li, Wen-Ying, 2016. "Process development of coke oven gas to methanol integrated with CO2 recycle for satisfactory techno-economic performance," Energy, Elsevier, vol. 112(C), pages 618-628.
    4. Therasme, Obste & Volk, Timothy A. & Fortier, Marie-Odile & Kim, Youngwoon & Wood, Christopher D. & Ha, HakSoo & Ali, Atif & Brown, Tristan & Malmsheimer, Robert, 2022. "Carbon footprint of biofuels production from forest biomass using hot water extraction and biochemical conversion in the Northeast United States," Energy, Elsevier, vol. 241(C).
    5. Brassard, P. & Godbout, S. & Hamelin, L., 2021. "Framework for consequential life cycle assessment of pyrolysis biorefineries: A case study for the conversion of primary forestry residues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    6. He, Jiaxin & Liu, Ying & Lin, Boqiang, 2018. "Should China support the development of biomass power generation?," Energy, Elsevier, vol. 163(C), pages 416-425.
    7. Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
    8. Marco Segreto & Lucas Principe & Alexandra Desormeaux & Marco Torre & Laura Tomassetti & Patrizio Tratzi & Valerio Paolini & Francesco Petracchini, 2020. "Trends in Social Acceptance of Renewable Energy Across Europe—A Literature Review," IJERPH, MDPI, vol. 17(24), pages 1-19, December.
    9. Zhao, Ying-jie & Zhang, Yu-ke & Cui, Yang & Duan, Yuan-yuan & Huang, Yi & Wei, Guo-qiang & Mohamed, Usama & Shi, Li-juan & Yi, Qun & Nimmo, William, 2022. "Pinch combined with exergy analysis for heat exchange network and techno-economic evaluation of coal chemical looping combustion power plant with CO2 capture," Energy, Elsevier, vol. 238(PA).
    10. Zhao, Rongchao & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong, 2017. "Numerical study on steam injection in a turbocompound diesel engine for waste heat recovery," Applied Energy, Elsevier, vol. 185(P1), pages 506-518.
    11. Lo, Shirleen Lee Yuen & How, Bing Shen & Leong, Wei Dong & Teng, Sin Yong & Rhamdhani, Muhammad Akbar & Sunarso, Jaka, 2021. "Techno-economic analysis for biomass supply chain: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Lan, Kai & Ou, Longwen & Park, Sunkyu & Kelley, Stephen S. & English, Burton C. & Yu, T. Edward & Larson, James & Yao, Yuan, 2021. "Techno-Economic Analysis of decentralized preprocessing systems for fast pyrolysis biorefineries with blended feedstocks in the southeastern United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    13. Vu, Thang Toan & Lim, Young-Il & Song, Daesung & Mun, Tae-Young & Moon, Ji-Hong & Sun, Dowon & Hwang, Yoon-Tae & Lee, Jae-Goo & Park, Young Cheol, 2020. "Techno-economic analysis of ultra-supercritical power plants using air- and oxy-combustion circulating fluidized bed with and without CO2 capture," Energy, Elsevier, vol. 194(C).
    14. Aghbashlo, Mortaza & Mobli, Hossein & Rafiee, Shahin & Madadlou, Ashkan, 2013. "A review on exergy analysis of drying processes and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 1-22.
    15. Sogut, Z. & Ilten, N. & Oktay, Z., 2010. "Energetic and exergetic performance evaluation of the quadruple-effect evaporator unit in tomato paste production," Energy, Elsevier, vol. 35(9), pages 3821-3826.
    16. Zachl, A. & Soria-Verdugo, A. & Buchmayr, M. & Gruber, J. & Anca-Couce, A. & Scharler, R. & Hochenauer, C., 2022. "Stratified downdraft gasification of wood chips with a significant bark content," Energy, Elsevier, vol. 261(PB).
    17. Sahoo, Kamalakanta & Bilek, Edward & Bergman, Richard & Mani, Sudhagar, 2019. "Techno-economic analysis of producing solid biofuels and biochar from forest residues using portable systems," Applied Energy, Elsevier, vol. 235(C), pages 578-590.
    18. Azizi, Mohammad Ali & Brouwer, Jacob, 2018. "Progress in solid oxide fuel cell-gas turbine hybrid power systems: System design and analysis, transient operation, controls and optimization," Applied Energy, Elsevier, vol. 215(C), pages 237-289.
    19. Xiang, Yanlei & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Cheng, Zeyang & Liu, Zexi, 2020. "Study on the effect of gasification agents on the integrated system of biomass gasification combined cycle and oxy-fuel combustion," Energy, Elsevier, vol. 206(C).
    20. Casas Ledón, Yannay & Arteaga-Perez, Luis E. & Toledo, Juan & Dewulf, Jo, 2015. "Exergoeconomic evaluation of an ethanol-fueled solid oxide fuel cell power plant," Energy, Elsevier, vol. 93(P2), pages 1287-1295.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16878-:d:1005126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.