IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i9p3821-3826.html
   My bibliography  Save this article

Energetic and exergetic performance evaluation of the quadruple-effect evaporator unit in tomato paste production

Author

Listed:
  • Sogut, Z.
  • Ilten, N.
  • Oktay, Z.

Abstract

Quadruple-effect evaporator units are commonly used in food focus area in sector is evaporative unit. It consumes about 60% of total energy input. The present study evaluates the performance of quadruple-effect evaporator unit (QEEU) by using exergy analysis based on actual operational data. A tomato paste factory is chosen for the analysis. The highest exergy destruction/loss occurs in the first effect with 158.2 kW, 52.7% of exergy input in first effect. Steam temperature should be decreased in order to decrease exergy destruction in first effect. Also, third effect achieves the highest exergy efficiency with 93.3%. Exergetic improvement potential of each effect varies between 0.3 kW and 83.6 kW. The highest and lowest exergetic improvement potential occurs in first and third effect of QEEU system, respectively. Exergetic improvement potential is equals to 52.80%, 11.10%, 6.73% and 69.8% of exergy loss/destruction from the first effect to the last effect, respectively. Total exergetic improvement potential is achieved as 128 kW (55% of total exergy loss/destruction) in QEEU system. It is expected that analyses result provide important information for designer and/or resources of multiple effect evaporator unit.

Suggested Citation

  • Sogut, Z. & Ilten, N. & Oktay, Z., 2010. "Energetic and exergetic performance evaluation of the quadruple-effect evaporator unit in tomato paste production," Energy, Elsevier, vol. 35(9), pages 3821-3826.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:9:p:3821-3826
    DOI: 10.1016/j.energy.2010.05.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210003051
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.05.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Can Coskun & Murad Bayraktar & Zuhal Oktay & Ibrahim Dincer, 2009. "Energy and exergy analyses of an industrial wood chips drying process," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 4(4), pages 224-229, July.
    2. Cambel, Ali B. & Warder, Richard C., 1976. "Energy resource demands of food production," Energy, Elsevier, vol. 1(2), pages 133-142.
    3. Dincer, Ibrahim & Rosen, Marc A., 2005. "Thermodynamic aspects of renewables and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(2), pages 169-189, April.
    4. Yeh, Ho-Ming & Ho, Chii-Dong, 2000. "Energy and mass balances in multiple-effect upward solar distillers with air flow through the last-effect unit," Energy, Elsevier, vol. 25(4), pages 325-337.
    5. Dincer, Ibrahim, 2002. "The role of exergy in energy policy making," Energy Policy, Elsevier, vol. 30(2), pages 137-149, January.
    6. Yeh, Ho-Ming & Chen, Zhi-Fang, 1994. "Energy balances for upward-type, double-effect solar distillers with air flow through the second-effect unit," Energy, Elsevier, vol. 19(6), pages 619-626.
    7. Erdal, Gülistan & Esengün, Kemal & Erdal, Hilmi & Gündüz, Orhan, 2007. "Energy use and economical analysis of sugar beet production in Tokat province of Turkey," Energy, Elsevier, vol. 32(1), pages 35-41.
    8. Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
    9. Waheed, M.A. & Jekayinfa, S.O. & Ojediran, J.O. & Imeokparia, O.E., 2008. "Energetic analysis of fruit juice processing operations in Nigeria," Energy, Elsevier, vol. 33(1), pages 35-45.
    10. Kaya, Durmus & Ibrahim Sarac, H., 2007. "Mathematical modeling of multiple-effect evaporators and energy economy," Energy, Elsevier, vol. 32(8), pages 1536-1542.
    11. Calderan, R. & Spiga, M. & Vestrucci, P., 1992. "Energy modelling of a cogeneration system for a food industry," Energy, Elsevier, vol. 17(6), pages 609-616.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sheng Zhang & Xinyuan Xie & Haibin Qu, 2023. "A data-driven workflow for evaporation performance degradation analysis: a full-scale case study in the herbal medicine manufacturing industry," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 651-668, February.
    2. Papasidero, Davide & Pierucci, Sauro & Manenti, Flavio, 2016. "Energy optimization of bread baking process undergoing quality constraints," Energy, Elsevier, vol. 116(P2), pages 1417-1422.
    3. Jankowiak, Lena & Jonkman, Jochem & Rossier-Miranda, Francisco J. & van der Goot, Atze Jan & Boom, Remko M., 2014. "Exergy driven process synthesis for isoflavone recovery from okara," Energy, Elsevier, vol. 74(C), pages 471-483.
    4. Hajjaji, Noureddine & Baccar, Ines & Pons, Marie-Noëlle, 2014. "Energy and exergy analysis as tools for optimization of hydrogen production by glycerol autothermal reforming," Renewable Energy, Elsevier, vol. 71(C), pages 368-380.
    5. Dogbe, Eunice Sefakor & Mandegari, Mohsen A. & Görgens, Johann F., 2018. "Exergetic diagnosis and performance analysis of a typical sugar mill based on Aspen Plus® simulation of the process," Energy, Elsevier, vol. 145(C), pages 614-625.
    6. Dowlati, Majid & Aghbashlo, Mortaza & Mojarab Soufiyan, Mohamad, 2017. "Exergetic performance analysis of an ice-cream manufacturing plant: A comprehensive survey," Energy, Elsevier, vol. 123(C), pages 445-459.
    7. Sharan, Prashant & Bandyopadhyay, Santanu, 2016. "Integration of thermo-vapor compressor with multiple-effect evaporator," Applied Energy, Elsevier, vol. 184(C), pages 560-573.
    8. Mojarab Soufiyan, Mohamad & Dadak, Ali & Hosseini, Seyed Sina & Nasiri, Farshid & Dowlati, Majid & Tahmasebi, Maryam & Aghbashlo, Mortaza, 2016. "Comprehensive exergy analysis of a commercial tomato paste plant with a double-effect evaporator," Energy, Elsevier, vol. 111(C), pages 910-922.
    9. Nazghelichi, Tayyeb & Kianmehr, Mohammad Hossein & Aghbashlo, Mortaza, 2010. "Thermodynamic analysis of fluidized bed drying of carrot cubes," Energy, Elsevier, vol. 35(12), pages 4679-4684.
    10. Hajjaji, Noureddine & Chahbani, Amna & Khila, Zouhour & Pons, Marie-Noëlle, 2014. "A comprehensive energy–exergy-based assessment and parametric study of a hydrogen production process using steam glycerol reforming," Energy, Elsevier, vol. 64(C), pages 473-483.
    11. Daniel Hoehn & María Margallo & Jara Laso & Ana Fernández-Ríos & Israel Ruiz-Salmón & Rubén Aldaco, 2022. "Energy Systems in the Food Supply Chain and in the Food Loss and Waste Valorization Processes: A Systematic Review," Energies, MDPI, vol. 15(6), pages 1-15, March.
    12. Verma, Om Prakash & Mohammed, Toufiq Haji & Mangal, Shubham & Manik, Gaurav, 2017. "Minimization of energy consumption in multi-stage evaporator system of Kraft recovery process using Interior-Point Method," Energy, Elsevier, vol. 129(C), pages 148-157.
    13. Waseem Amjad & Muhammad Ali Raza & Furqan Asghar & Anjum Munir & Faisal Mahmood & Syed Nabeel Husnain & Muhammad Imtiaz Hussain & Jun-Tae Kim, 2022. "Advanced Exergy Analyses of a Solar Hybrid Food Dehydrator," Energies, MDPI, vol. 15(4), pages 1-15, February.
    14. Jędrzej Trajer & Radosław Winiczenko & Bogdan Dróżdż & Janusz Wojdalski & Robert Sałat, 2023. "Multi-Criteria Optimization of Energy and Water Consumption in Fruit- and Vegetable-Processing Plants in Poland," Energies, MDPI, vol. 16(24), pages 1-16, December.
    15. Karakaya, Ahmet & Özilgen, Mustafa, 2011. "Energy utilization and carbon dioxide emission in the fresh, paste, whole-peeled, diced, and juiced tomato production processes," Energy, Elsevier, vol. 36(8), pages 5101-5110.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maryam Ghodrat & Bijan Samali & Muhammad Akbar Rhamdhani & Geoffrey Brooks, 2019. "Thermodynamic-Based Exergy Analysis of Precious Metal Recovery out of Waste Printed Circuit Board through Black Copper Smelting Process," Energies, MDPI, vol. 12(7), pages 1-20, April.
    2. Chen, G.Q. & Jiang, M.M. & Yang, Z.F. & Chen, B. & Ji, Xi & Zhou, J.B., 2009. "Exergetic assessment for ecological economic system: Chinese agriculture," Ecological Modelling, Elsevier, vol. 220(3), pages 397-410.
    3. Hepbasli, Arif & Alsuhaibani, Zeyad, 2011. "Exergetic and exergoeconomic aspects of wind energy systems in achieving sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2810-2825, August.
    4. Daissy Lorena Restrepo-Serna & Jimmy Anderson Martínez-Ruano & Carlos Ariel Cardona-Alzate, 2018. "Energy Efficiency of Biorefinery Schemes Using Sugarcane Bagasse as Raw Material," Energies, MDPI, vol. 11(12), pages 1-12, December.
    5. Singh, Gurjeet & Singh, P.J. & Tyagi, V.V. & Barnwal, P. & Pandey, A.K., 2019. "Exergy and thermo-economic analysis of ghee production plant in dairy industry," Energy, Elsevier, vol. 167(C), pages 602-618.
    6. Mehmet Kanoglu & Ibrahim Dincer & Yunus Cengel, 2009. "Exergy for better environment and sustainability," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 11(5), pages 971-988, October.
    7. Hepbasli, Arif, 2008. "A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 593-661, April.
    8. Turan, Onder & Aydin, Hakan, 2014. "Exergetic and exergo-economic analyses of an aero-derivative gas turbine engine," Energy, Elsevier, vol. 74(C), pages 638-650.
    9. Aghbashlo, Mortaza & Mobli, Hossein & Rafiee, Shahin & Madadlou, Ashkan, 2013. "A review on exergy analysis of drying processes and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 1-22.
    10. Mojarab Soufiyan, Mohamad & Dadak, Ali & Hosseini, Seyed Sina & Nasiri, Farshid & Dowlati, Majid & Tahmasebi, Maryam & Aghbashlo, Mortaza, 2016. "Comprehensive exergy analysis of a commercial tomato paste plant with a double-effect evaporator," Energy, Elsevier, vol. 111(C), pages 910-922.
    11. Anderson, Austin & Rezaie, Behnaz & Rosen, Marc A., 2021. "An innovative approach to enhance sustainability of a district cooling system by adjusting cold thermal storage and chiller operation," Energy, Elsevier, vol. 214(C).
    12. Lamidi, Rasaq. O. & Jiang, L. & Pathare, Pankaj B. & Wang, Y.D. & Roskilly, A.P., 2019. "Recent advances in sustainable drying of agricultural produce: A review," Applied Energy, Elsevier, vol. 233, pages 367-385.
    13. Aydın, Hakan & Turan, Önder & Karakoç, T. Hikmet & Midilli, Adnan, 2013. "Exergo-sustainability indicators of a turboprop aircraft for the phases of a flight," Energy, Elsevier, vol. 58(C), pages 550-560.
    14. Utlu, Zafer & Hepbasli, Arif, 2007. "Parametrical investigation of the effect of dead (reference) state on energy and exergy utilization efficiencies of residential-commercial sectors: A review and an application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(4), pages 603-634, May.
    15. Lake, Andrew & Rezaie, Behanz, 2018. "Energy and exergy efficiencies assessment for a stratified cold thermal energy storage," Applied Energy, Elsevier, vol. 220(C), pages 605-615.
    16. Pilar Lopez-Llompart & G. Mathias Kondolf, 2016. "Encroachments in floodways of the Mississippi River and Tributaries Project," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 513-542, March.
    17. Cheng, Jianquan & Bertolini, Luca, 2013. "Measuring urban job accessibility with distance decay, competition and diversity," Journal of Transport Geography, Elsevier, vol. 30(C), pages 100-109.
    18. M. De Donno & M. Pratelli, 2006. "A theory of stochastic integration for bond markets," Papers math/0602532, arXiv.org.
    19. Prilly Oktoviany & Robert Knobloch & Ralf Korn, 2021. "A machine learning-based price state prediction model for agricultural commodities using external factors," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 1063-1085, December.
    20. Michelle Sheran Sylvester, 2007. "The Career and Family Choices of Women: A Dynamic Analysis of Labor Force Participation, Schooling, Marriage and Fertility Decisions," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 10(3), pages 367-399, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:9:p:3821-3826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.