IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v318y2025ics0360544225004311.html
   My bibliography  Save this article

Assessing the triple-bottom-line impacts of crop straw-based bio-natural gas production in China: An input‒output-based hybrid LCA model

Author

Listed:
  • Wang, Changbo
  • Wang, Ze
  • Feng, Meili
  • Liu, Jinliang
  • Chang, Yuan
  • Wang, Qunwei

Abstract

Bio-natural gas (BNG) represents a viable alternative to traditional natural gas. To ensure its large-scale adoption, a comprehensive evaluation of its economic, social, and environmental impacts —commonly referred to as the triple bottom line (TBL) —is essential. This study employed a hybrid life-cycle assessment approach, integrating data from a representative straw-based BNG project in China with a 2018 input‒output table to quantify TBL impacts, including economic stimulus, job creation, and CO2 emissionsThe findings demonstrated that every million yuan of BNG production could drive 2.55 million yuan in economic output, create 1.91 full-time equivalent jobs, and reduce life-cycle CO2 emissions by 504.11 tonnes, highlighting its considerable overall benefits. Upstream sectors, particularly agriculture, electricity, and equipment manufacturing, emerged as major contributors to these impacts, emphasising the necessity for effective supply chain management. Sensitivity analysis revealed that anaerobic digestion efficiency, biogas purification performance, and feedstock transportation distances significantly affect the TBL outcomes, offering guidance for policies aimed at fostering the sustainable growth of the BNG sector. This study establishes a methodological framework for evaluating the TBL impacts in emerging industries and pinpoints key opportunities to enhance the sustainability of BNG production in China.

Suggested Citation

  • Wang, Changbo & Wang, Ze & Feng, Meili & Liu, Jinliang & Chang, Yuan & Wang, Qunwei, 2025. "Assessing the triple-bottom-line impacts of crop straw-based bio-natural gas production in China: An input‒output-based hybrid LCA model," Energy, Elsevier, vol. 318(C).
  • Handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225004311
    DOI: 10.1016/j.energy.2025.134789
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225004311
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134789?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Raphael Slade & Ausilio Bauen & Robert Gross, 2014. "Global bioenergy resources," Nature Climate Change, Nature, vol. 4(2), pages 99-105, February.
    2. Brinkman, Marnix L.J. & Wicke, Birka & Faaij, André P.C. & van der Hilst, Floor, 2019. "Projecting socio-economic impacts of bioenergy: Current status and limitations of ex-ante quantification methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Akella, A.K. & Saini, R.P. & Sharma, M.P., 2009. "Social, economical and environmental impacts of renewable energy systems," Renewable Energy, Elsevier, vol. 34(2), pages 390-396.
    4. Heinz Kopetz, 2013. "Build a biomass energy market," Nature, Nature, vol. 494(7435), pages 29-31, February.
    5. Xu, Meijia & Chang, Yuan & Wei, Ying & Wang, Yafei & Zhang, Pengpeng & Huang, Zhiye, 2023. "Quantification and spatial pattern of embodied CO2 footprint of prefabricated buildings in urban agglomerations: A case study of Beijing–Tianjin–Hebei, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    6. Deng, Liangwei & Liu, Yi & Zheng, Dan & Wang, Lan & Pu, Xiaodong & Song, Li & Wang, Zhiyong & Lei, Yunhui & Chen, Ziai & Long, Yan, 2017. "Application and development of biogas technology for the treatment of waste in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 845-851.
    7. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    8. Ardolino, F. & Cardamone, G.F. & Parrillo, F. & Arena, U., 2021. "Biogas-to-biomethane upgrading: A comparative review and assessment in a life cycle perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    9. Koizumi, Tatsuji, 2013. "Biofuel and food security in China and Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 102-109.
    10. Amigun, Bamikole & Musango, Josephine Kaviti & Stafford, William, 2011. "Biofuels and sustainability in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1360-1372, February.
    11. Chang, Yuan & Huang, Runze & Ries, Robert J. & Masanet, Eric, 2015. "Life-cycle comparison of greenhouse gas emissions and water consumption for coal and shale gas fired power generation in China," Energy, Elsevier, vol. 86(C), pages 335-343.
    12. Ajanovic, Amela, 2011. "Biofuels versus food production: Does biofuels production increase food prices?," Energy, Elsevier, vol. 36(4), pages 2070-2076.
    13. Thomas O. Wiedmann & Manfred Lenzen & John R. Barrett, 2009. "Companies on the Scale: Comparing and Benchmarking the Sustainability Performance of Businesses," Journal of Industrial Ecology, Yale University, vol. 13(3), pages 361-383, June.
    14. Sultana, Arifa & Kumar, Amit, 2011. "Development of energy and emission parameters for densified form of lignocellulosic biomass," Energy, Elsevier, vol. 36(5), pages 2716-2732.
    15. Wang, Changbo & Chang, Yuan & Zhang, Lixiao & Chen, Yongsheng & Pang, Mingyue, 2018. "Quantifying uncertainties in greenhouse gas accounting of biomass power generation in China: System boundary and parameters," Energy, Elsevier, vol. 158(C), pages 121-127.
    16. Ji, Xi & Long, Xianling, 2016. "A review of the ecological and socioeconomic effects of biofuel and energy policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 41-52.
    17. Bullard, Clark W. & Penner, Peter S. & Pilati, David A., 1978. "Net energy analysis : Handbook for combining process and input-output analysis," Resources and Energy, Elsevier, vol. 1(3), pages 267-313, November.
    18. Malik, Arunima & Lenzen, Manfred & Ely, Rômulo Neves & Dietzenbacher, Erik, 2014. "Simulating the impact of new industries on the economy: The case of biorefining in Australia," Ecological Economics, Elsevier, vol. 107(C), pages 84-93.
    19. Feng, Fei & Song, Guohui & Shen, Laihong & Xiao, Jun, 2017. "Environmental benefits analysis based on life cycle assessment of rice straw-based synthetic natural gas in China," Energy, Elsevier, vol. 139(C), pages 341-349.
    20. Patrizio, P. & Leduc, S. & Chinese, D. & Dotzauer, E. & Kraxner, F., 2015. "Biomethane as transport fuel – A comparison with other biogas utilization pathways in northern Italy," Applied Energy, Elsevier, vol. 157(C), pages 25-34.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fu, Yuning & Yang, Honghua & Yang, Xingyuan & Arras, Maximilian & Chong, Chin Hao & Ma, Linwei & Li, Zheng, 2025. "A holistic picture of the carbon emission responsibility in China's aluminium supply chain: Production-side flow analyses, consumption-side responsibility allocation, and driving factor analysis," Energy, Elsevier, vol. 327(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji, Xi & Long, Xianling, 2016. "A review of the ecological and socioeconomic effects of biofuel and energy policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 41-52.
    2. Wu, X.D. & Guo, J.L. & Chen, G.Q., 2018. "The striking amount of carbon emissions by the construction stage of coal-fired power generation system in China," Energy Policy, Elsevier, vol. 117(C), pages 358-369.
    3. repec:lic:licosd:31912 is not listed on IDEAS
    4. Wu, X.D. & Chen, G.Q., 2017. "Energy and water nexus in power generation: The surprisingly high amount of industrial water use induced by solar power infrastructure in China," Applied Energy, Elsevier, vol. 195(C), pages 125-136.
    5. Negash, Martha & Swinnen, Johan F.M., 2013. "Biofuels and food security: Micro-evidence from Ethiopia," Energy Policy, Elsevier, vol. 61(C), pages 963-976.
    6. Wu, X.D. & Ji, Xi & Li, Chaohui & Xia, X.H. & Chen, G.Q., 2019. "Water footprint of thermal power in China: Implications from the high amount of industrial water use by plant infrastructure of coal-fired generation system," Energy Policy, Elsevier, vol. 132(C), pages 452-461.
    7. Jha, Priyanka & Schmidt, Stefan, 2021. "State of biofuel development in sub-Saharan Africa: How far sustainable?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    8. Wang, Changbo & Chang, Yuan & Zhang, Lixiao & Pang, Mingyue & Hao, Yan, 2017. "A life-cycle comparison of the energy, environmental and economic impacts of coal versus wood pellets for generating heat in China," Energy, Elsevier, vol. 120(C), pages 374-384.
    9. Welfle, Andrew & Röder, Mirjam, 2022. "Mapping the sustainability of bioenergy to maximise benefits, mitigate risks and drive progress toward the Sustainable Development Goals," Renewable Energy, Elsevier, vol. 191(C), pages 493-509.
    10. Song, Guohui & Xiao, Jun & Yan, Chao & Gu, Haiming & Zhao, Hao, 2022. "Quality of gaseous biofuels: Statistical assessment and guidance on production technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    11. Johanna Choumert & Pascale Combes Motel & Charlain Guegang Djimeli, 2017. "The biofuel-development nexus: A meta-analysis," CERDI Working papers halshs-01512678, HAL.
    12. Choumert Nkolo, Johanna & Combes Motel, Pascale & Guegang Djimeli, Charlain, 2018. "Income-generating Effects of Biofuel Policies: A Meta-analysis of the CGE Literature," Ecological Economics, Elsevier, vol. 147(C), pages 230-242.
    13. Luo, Erga & Yan, Ru & He, Yaping & Han, Zhen & Feng, Yiyu & Qian, Wenrong & Li, Jinkai, 2024. "Does biogas industrial policy promote the industrial transformation?," Resources Policy, Elsevier, vol. 88(C).
    14. Anna Christy & Marwa Elnahass & Jaime Amezaga & Anthony Browne & Oliver Heidrich, 2024. "A dynamic framework to align company climate reporting and action with global climate targets," Business Strategy and the Environment, Wiley Blackwell, vol. 33(4), pages 3103-3128, May.
    15. Thomas Wiedmann & John Barrett, 2010. "A Review of the Ecological Footprint Indicator—Perceptions and Methods," Sustainability, MDPI, vol. 2(6), pages 1-49, June.
    16. Wang, Changbo & Malik, Arunima & Wang, Yafei & Chang, Yuan & Pang, Mingyue & Zhou, Dequn, 2020. "Understanding the resource-use and environmental impacts of bioethanol production in China based on a MRIO-based hybrid LCA model," Energy, Elsevier, vol. 203(C).
    17. Ge, Jianping & Lei, Yalin & Tokunaga, Suminori, 2014. "Non-grain fuel ethanol expansion and its effects on food security: A computable general equilibrium analysis for China," Energy, Elsevier, vol. 65(C), pages 346-356.
    18. G Tassinari & S Boccaletti & C Soregaroli, 2023. "Recycling sludge in agriculture? Assessing sustainability of nutrient recovery in Italy," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 50(5), pages 1633-1658.
    19. Keogh, Niamh & Corr, D. & O'Shea, R. & Monaghan, R.F.D., 2022. "The gas grid as a vector for regional decarbonisation - a techno economic case study for biomethane injection and natural gas heavy goods vehicles," Applied Energy, Elsevier, vol. 323(C).
    20. Yang, Yang & Liang, Sai & Yang, Yi & Xie, Guang Hui & Zhao, Wei, 2022. "Spatial disparity of life-cycle greenhouse gas emissions from corn straw-based bioenergy production in China," Applied Energy, Elsevier, vol. 305(C).
    21. Marcin Pawel Jarzebski & Abubakari Ahmed & Yaw Agyeman Boafo & Boubacar Siddighi Balde & Linda Chinangwa & Osamu Saito & Graham Maltitz & Alexandros Gasparatos, 2020. "Food security impacts of industrial crop production in sub-Saharan Africa: a systematic review of the impact mechanisms," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(1), pages 105-135, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225004311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.