IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v203y2020ics0360544220309841.html
   My bibliography  Save this article

Understanding the resource-use and environmental impacts of bioethanol production in China based on a MRIO-based hybrid LCA model

Author

Listed:
  • Wang, Changbo
  • Malik, Arunima
  • Wang, Yafei
  • Chang, Yuan
  • Pang, Mingyue
  • Zhou, Dequn

Abstract

To understand the resource and environmental costs of bioethanol production, this study estimates the water and farmland use and CO2 emissions in China due to first- and second-generation bioethanol production technologies using a multi-regional input-output-based hybrid life cycle assessment model. Sensitivity analysis and structural path analysis are combined to investigate the key pathways for bioethanol production impact mitigation. Results show that the first-generation technology has higher resource-use and environmental impacts compared to the second-generation technology. The gasoline-to-bioethanol transition enables CO2 emission reductions, but at the cost of increased water and farmland use. Key impact mitigation pathways are then investigated for the first four production layers (PL0→3) in bioethanol industries because these layers contribute to a significant environmental footprint. For PL0, water-saving technologies must be developed to reduce direct water use in first-generation bioethanol production. For PL1, the primary production material suppliers of the bioethanol industry, such as biomass feedstock, food and tobacco, and water supply industries were ascertained with high potential for impact mitigation. For PL2→3, key pathways are investigated by combining their sensitivity and impact values. The results highlight the significance and necessity of cross-sectoral collaboration for resource and environmental impact reduction.

Suggested Citation

  • Wang, Changbo & Malik, Arunima & Wang, Yafei & Chang, Yuan & Pang, Mingyue & Zhou, Dequn, 2020. "Understanding the resource-use and environmental impacts of bioethanol production in China based on a MRIO-based hybrid LCA model," Energy, Elsevier, vol. 203(C).
  • Handle: RePEc:eee:energy:v:203:y:2020:i:c:s0360544220309841
    DOI: 10.1016/j.energy.2020.117877
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220309841
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117877?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mattila, Tuomas & Koskela, Sirkka & Seppälä, Jyri & Mäenpää, Ilmo, 2013. "Sensitivity analysis of environmentally extended input–output models as a tool for building scenarios of sustainable development," Ecological Economics, Elsevier, vol. 86(C), pages 148-155.
    2. Yang, Q. & Chen, G.Q., 2012. "Nonrenewable energy cost of corn-ethanol in China," Energy Policy, Elsevier, vol. 41(C), pages 340-347.
    3. Yang, Hong & Zhou, Yuan & Liu, Junguo, 2009. "Land and water requirements of biofuel and implications for food supply and the environment in China," Energy Policy, Elsevier, vol. 37(5), pages 1876-1885, May.
    4. Wang, Changbo & Zhang, Lixiao & Chang, Yuan & Pang, Mingyue, 2015. "Biomass direct-fired power generation system in China: An integrated energy, GHG emissions, and economic evaluation for Salix," Energy Policy, Elsevier, vol. 84(C), pages 155-165.
    5. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan & Guo, Qingfang, 2009. "Energy consumption and GHG emissions of six biofuel pathways by LCA in (the) People's Republic of China," Applied Energy, Elsevier, vol. 86(Supplemen), pages 197-208, November.
    6. Zhao, Lili & Ou, Xunmin & Chang, Shiyan, 2016. "Life-cycle greenhouse gas emission and energy use of bioethanol produced from corn stover in China: Current perspectives and future prospectives," Energy, Elsevier, vol. 115(P1), pages 303-313.
    7. Lenzen, Manfred, 2007. "Structural path analysis of ecosystem networks," Ecological Modelling, Elsevier, vol. 200(3), pages 334-342.
    8. Yafei Wang, 2017. "An industrial ecology virtual framework for policy making in China," Economic Systems Research, Taylor & Francis Journals, vol. 29(2), pages 252-274, April.
    9. Sai Liang & Sen Guo & Joshua P. Newell & Shen Qu & Yu Feng & Anthony S.F. Chiu & Ming Xu, 2016. "Global Drivers of Russian Timber Harvest," Journal of Industrial Ecology, Yale University, vol. 20(3), pages 515-525, June.
    10. Gouzaye, Amadou & Epplin, Francis M., 2016. "Land requirements, feedstock haul distance, and expected profit response to land use restrictions for switchgrass production," Energy Economics, Elsevier, vol. 58(C), pages 59-66.
    11. Havlík, Petr & Schneider, Uwe A. & Schmid, Erwin & Böttcher, Hannes & Fritz, Steffen & Skalský, Rastislav & Aoki, Kentaro & Cara, Stéphane De & Kindermann, Georg & Kraxner, Florian & Leduc, Sylvain & , 2011. "Global land-use implications of first and second generation biofuel targets," Energy Policy, Elsevier, vol. 39(10), pages 5690-5702, October.
    12. Zhen, Wei & Qin, Quande & Zhong, Zhangqi & Li, Li & Wei, Yi-Ming, 2018. "Uncovering household indirect energy-saving responsibility from a sectoral perspective: An empirical analysis of Guangdong, China," Energy Economics, Elsevier, vol. 72(C), pages 451-461.
    13. Chang, Yuan & Huang, Runze & Ries, Robert J. & Masanet, Eric, 2015. "Life-cycle comparison of greenhouse gas emissions and water consumption for coal and shale gas fired power generation in China," Energy, Elsevier, vol. 86(C), pages 335-343.
    14. Wang, Changbo & Chang, Yuan & Zhang, Lixiao & Pang, Mingyue & Hao, Yan, 2017. "A life-cycle comparison of the energy, environmental and economic impacts of coal versus wood pellets for generating heat in China," Energy, Elsevier, vol. 120(C), pages 374-384.
    15. Weng, Yuwei & Chang, Shiyan & Cai, Wenjia & Wang, Can, 2019. "Exploring the impacts of biofuel expansion on land use change and food security based on a land explicit CGE model: A case study of China," Applied Energy, Elsevier, vol. 236(C), pages 514-525.
    16. Satish Joshi, 1999. "Product Environmental Life‐Cycle Assessment Using Input‐Output Techniques," Journal of Industrial Ecology, Yale University, vol. 3(2‐3), pages 95-120, April.
    17. Meng, F.Y. & Zhou, D.Q. & Zhou, P. & Bai, Y., 2014. "Sectoral comparison of electricity-saving potentials in China: An analysis based on provincial input–output tables," Energy, Elsevier, vol. 72(C), pages 772-782.
    18. Wang, Changbo & Chang, Yuan & Zhang, Lixiao & Chen, Yongsheng & Pang, Mingyue, 2018. "Quantifying uncertainties in greenhouse gas accounting of biomass power generation in China: System boundary and parameters," Energy, Elsevier, vol. 158(C), pages 121-127.
    19. Balat, Mustafa & Balat, Havva, 2009. "Recent trends in global production and utilization of bio-ethanol fuel," Applied Energy, Elsevier, vol. 86(11), pages 2273-2282, November.
    20. Wood, Richard & Lenzen, Manfred, 2009. "Structural path decomposition," Energy Economics, Elsevier, vol. 31(3), pages 335-341, May.
    21. Leontief, Wassily, 1970. "Environmental Repercussions and the Economic Structure: An Input-Output Approach," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 262-271, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mario Alberto Yaverino-Gutiérrez & Alán Yazid Chávez-Hita Wong & Lizbeth Alejandra Ibarra-Muñoz & Ana Cristina Figueroa Chávez & Jazel Doménica Sosa-Martínez & Ana Sofia Tagle-Pedroza & Javier Ulises , 2024. "Perspectives and Progress in Bioethanol Processing and Social Economic Impacts," Sustainability, MDPI, vol. 16(2), pages 1-31, January.
    2. Wang, Changbo & Zhang, Lixiao & Chang, Yuan & Pang, Mingyue, 2021. "Energy return on investment (EROI) of biomass conversion systems in China: Meta-analysis focused on system boundary unification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Yang, Yang & Liang, Sai & Yang, Yi & Xie, Guang Hui & Zhao, Wei, 2022. "Spatial disparity of life-cycle greenhouse gas emissions from corn straw-based bioenergy production in China," Applied Energy, Elsevier, vol. 305(C).
    4. Jingying Fu & Jinshuang Du & Gang Lin & Dong Jiang, 2021. "Analysis of Yield Potential and Regional Distribution for Bioethanol in China," Energies, MDPI, vol. 14(15), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Changbo & Zhang, Lixiao & Chang, Yuan & Pang, Mingyue, 2021. "Energy return on investment (EROI) of biomass conversion systems in China: Meta-analysis focused on system boundary unification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Zhen, Wei & Qin, Quande & Zhong, Zhangqi & Li, Li & Wei, Yi-Ming, 2018. "Uncovering household indirect energy-saving responsibility from a sectoral perspective: An empirical analysis of Guangdong, China," Energy Economics, Elsevier, vol. 72(C), pages 451-461.
    3. Liu, Huacai & Huang, Yanqin & Yuan, Hongyou & Yin, Xiuli & Wu, Chuangzhi, 2018. "Life cycle assessment of biofuels in China: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 301-322.
    4. Ji, Xi & Long, Xianling, 2016. "A review of the ecological and socioeconomic effects of biofuel and energy policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 41-52.
    5. Ling Li & Ling Tang & Junrong Zhang, 2019. "Coupling Structural Decomposition Analysis and Sensitivity Analysis to Investigate CO 2 Emission Intensity in China," Energies, MDPI, vol. 12(12), pages 1-23, June.
    6. Yang, Yang & Liang, Sai & Yang, Yi & Xie, Guang Hui & Zhao, Wei, 2022. "Spatial disparity of life-cycle greenhouse gas emissions from corn straw-based bioenergy production in China," Applied Energy, Elsevier, vol. 305(C).
    7. Wu, Xudong & Li, Chaohui & Shao, Ling & Meng, Jing & Zhang, Lixiao & Chen, Guoqian, 2021. "Is solar power renewable and carbon-neutral: Evidence from a pilot solar tower plant in China under a systems view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    8. Li, Yingzhu & Su, Bin & Dasgupta, Shyamasree, 2018. "Structural path analysis of India's carbon emissions using input-output and social accounting matrix frameworks," Energy Economics, Elsevier, vol. 76(C), pages 457-469.
    9. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    10. Weng, Yuwei & Chang, Shiyan & Cai, Wenjia & Wang, Can, 2019. "Exploring the impacts of biofuel expansion on land use change and food security based on a land explicit CGE model: A case study of China," Applied Energy, Elsevier, vol. 236(C), pages 514-525.
    11. Yulei Xie & Ling Ji & Beibei Zhang & Gordon Huang, 2018. "Evolution of the Scientific Literature on Input–Output Analysis: A Bibliometric Analysis of 1990–2017," Sustainability, MDPI, vol. 10(9), pages 1-17, September.
    12. Zhao, Yuanhao & Wang, Changbo & Zhang, Lixiao & Chang, Yuan & Hao, Yan, 2021. "Converting waste cooking oil to biodiesel in China: Environmental impacts and economic feasibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    13. Liu, Lan-Cui & Cheng, Lei & Zhao, Lu-Tao & Cao, Ying & Wang, Ce, 2020. "Investigating the significant variation of coal consumption in China in 2002-2017," Energy, Elsevier, vol. 207(C).
    14. Wei Yang & Junnian Song, 2019. "Depicting Flows of Embodied Water Pollutant Discharge within Production System: Case of an Undeveloped Region," Sustainability, MDPI, vol. 11(14), pages 1-15, July.
    15. Rui Huang & Arunima Malik & Manfred Lenzen & Yutong Jin & Yafei Wang & Futu Faturay & Zhiyi Zhu, 2022. "Supply-chain impacts of Sichuan earthquake: a case study using disaster input–output analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2227-2248, February.
    16. David Font Vivanco & Ranran Wang & Sebastiaan Deetman & Edgar Hertwich, 2019. "Unraveling the Nexus: Exploring the Pathways to Combined Resource Use," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 241-252, February.
    17. Wu, Yazhen & Deppermann, Andre & Havlík, Petr & Frank, Stefan & Ren, Ming & Zhao, Hao & Ma, Lin & Fang, Chen & Chen, Qi & Dai, Hancheng, 2023. "Global land-use and sustainability implications of enhanced bioenergy import of China," Applied Energy, Elsevier, vol. 336(C).
    18. Jonas Bunsen & Matthias Finkbeiner, 2022. "An Introductory Review of Input-Output Analysis in Sustainability Sciences Including Potential Implications of Aggregation," Sustainability, MDPI, vol. 15(1), pages 1-24, December.
    19. Cholapat Jongdeepaisal & Seigo Nasu, 2018. "Economic Impact Evaluation of a Biomass Power Plant Using a Technical Coefficient Pre-Adjustment in Hybrid Input-Output Analysis," Energies, MDPI, vol. 11(3), pages 1-11, March.
    20. Zhang, Caixia & Xie, Gaodi & Li, Shimei & Ge, Liqiang & He, Tingting, 2010. "The productive potentials of sweet sorghum ethanol in China," Applied Energy, Elsevier, vol. 87(7), pages 2360-2368, July.

    More about this item

    Keywords

    Bioethanol; Hybrid LCA; Water use; Farmland use; CO2 emission;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:203:y:2020:i:c:s0360544220309841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.