IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i2p608-d1316559.html
   My bibliography  Save this article

Perspectives and Progress in Bioethanol Processing and Social Economic Impacts

Author

Listed:
  • Mario Alberto Yaverino-Gutiérrez

    (Bioremediation Laboratory, Faculty of Biological Sciences, Autonomous University of Coahuila, Torreón-Matamoros Highways km 7.5, Torreón 27276, Mexico)

  • Alán Yazid Chávez-Hita Wong

    (Bioremediation Laboratory, Faculty of Biological Sciences, Autonomous University of Coahuila, Torreón-Matamoros Highways km 7.5, Torreón 27276, Mexico)

  • Lizbeth Alejandra Ibarra-Muñoz

    (Bioremediation Laboratory, Faculty of Biological Sciences, Autonomous University of Coahuila, Torreón-Matamoros Highways km 7.5, Torreón 27276, Mexico)

  • Ana Cristina Figueroa Chávez

    (Bioremediation Laboratory, Faculty of Biological Sciences, Autonomous University of Coahuila, Torreón-Matamoros Highways km 7.5, Torreón 27276, Mexico)

  • Jazel Doménica Sosa-Martínez

    (Bioremediation Laboratory, Faculty of Biological Sciences, Autonomous University of Coahuila, Torreón-Matamoros Highways km 7.5, Torreón 27276, Mexico)

  • Ana Sofia Tagle-Pedroza

    (Bioremediation Laboratory, Faculty of Biological Sciences, Autonomous University of Coahuila, Torreón-Matamoros Highways km 7.5, Torreón 27276, Mexico)

  • Javier Ulises Hernández-Beltran

    (Bioremediation Laboratory, Faculty of Biological Sciences, Autonomous University of Coahuila, Torreón-Matamoros Highways km 7.5, Torreón 27276, Mexico)

  • Salvador Sánchez-Muñoz

    (Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12602-810, Brazil)

  • Julio César dos Santos

    (Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12602-810, Brazil)

  • Silvio Silvério da Silva

    (Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12602-810, Brazil)

  • Nagamani Balagurusamy

    (Bioremediation Laboratory, Faculty of Biological Sciences, Autonomous University of Coahuila, Torreón-Matamoros Highways km 7.5, Torreón 27276, Mexico)

Abstract

The liquid biofuel bioethanol is widely produced worldwide via fermenting sugars extracted from a variety of raw materials, including lignocellulose biomass, one of the world’s most abundant renewable resources. Due to its recalcitrant character, lignocellulose is usually pretreated by mechanical, chemical, and biological methods to maximize sugar recovery. Pretreated lignocellulose biomass undergoes a fermentation process performed sequentially or simultaneously to saccharification. The different fermentation strategies (e.g., separate or simultaneous hydrolysis and fermentation or co-fermentation) and conditions (e.g., inoculum type load, agitation, temperature, and pH) affect ethanol yield. Genetic modification of the inoculum has been focused recently to improve ethanol tolerance and as well as to use different sugars to enhance the performance of the microorganisms involved in fermentation. Nonetheless, these improvements result in a substantial increase in costs and have certain environmental costs. This review offers an overview of advancements in bioethanol production, with a primary focus on lignocellulosic feedstock, while also considering other feedstocks. Furthermore, it provides insights into the economic, social, and environmental impacts associated with bioethanol production.

Suggested Citation

  • Mario Alberto Yaverino-Gutiérrez & Alán Yazid Chávez-Hita Wong & Lizbeth Alejandra Ibarra-Muñoz & Ana Cristina Figueroa Chávez & Jazel Doménica Sosa-Martínez & Ana Sofia Tagle-Pedroza & Javier Ulises , 2024. "Perspectives and Progress in Bioethanol Processing and Social Economic Impacts," Sustainability, MDPI, vol. 16(2), pages 1-31, January.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:608-:d:1316559
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/2/608/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/2/608/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Changbo & Malik, Arunima & Wang, Yafei & Chang, Yuan & Pang, Mingyue & Zhou, Dequn, 2020. "Understanding the resource-use and environmental impacts of bioethanol production in China based on a MRIO-based hybrid LCA model," Energy, Elsevier, vol. 203(C).
    2. Sanjeev Kumar Soni & Apurav Sharma & Raman Soni, 2023. "Microbial Enzyme Systems in the Production of Second Generation Bioethanol," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    3. Li, Wen-Chao & Zhang, Sen-Jia & Xu, Tao & Sun, Mei-Qing & Zhu, Jia-Qing & Zhong, Cheng & Li, Bing-Zhi & Yuan, Ying-Jin, 2020. "Fractionation of corn stover by two-step pretreatment for production of ethanol, furfural, and lignin," Energy, Elsevier, vol. 195(C).
    4. Ramachandra, T.V. & Hebbale, Deepthi, 2020. "Bioethanol from macroalgae: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    5. Ying Huang & Yongli Zhang & Feifan Deng & Daiqing Zhao & Rong Wu, 2022. "Impacts of Built-Environment on Carbon Dioxide Emissions from Traffic: A Systematic Literature Review," IJERPH, MDPI, vol. 19(24), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. So-Yeon Jeong & Jae-Won Lee, 2021. "Effects of Sugars and Degradation Products Derived from Lignocellulosic Biomass on Maleic Acid Production," Energies, MDPI, vol. 14(4), pages 1-11, February.
    2. Liu, Yao & Zheng, Xiaojie & Tao, Shunhui & Hu, Lei & Zhang, Xiaodong & Lin, Xiaoqing, 2021. "Process optimization for deep eutectic solvent pretreatment and enzymatic hydrolysis of sugar cane bagasse for cellulosic ethanol fermentation," Renewable Energy, Elsevier, vol. 177(C), pages 259-267.
    3. Tao Li & Lei Ma & Zheng Liu & Chaonan Yi & Kaitong Liang, 2023. "Dual Carbon Goal-Based Quadrilateral Evolutionary Game: Study on the New Energy Vehicle Industry in China," IJERPH, MDPI, vol. 20(4), pages 1-16, February.
    4. Kostas, Emily T. & Adams, Jessica M.M. & Ruiz, Héctor A. & Durán-Jiménez, Gabriela & Lye, Gary J., 2021. "Macroalgal biorefinery concepts for the circular bioeconomy: A review on biotechnological developments and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Wang, Changbo & Zhang, Lixiao & Chang, Yuan & Pang, Mingyue, 2021. "Energy return on investment (EROI) of biomass conversion systems in China: Meta-analysis focused on system boundary unification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    6. Jingying Fu & Jinshuang Du & Gang Lin & Dong Jiang, 2021. "Analysis of Yield Potential and Regional Distribution for Bioethanol in China," Energies, MDPI, vol. 14(15), pages 1-16, July.
    7. Ocreto, Jherwin B. & Chen, Wei-Hsin & Ubando, Aristotle T. & Park, Young-Kwon & Sharma, Amit Kumar & Ashokkumar, Veeramuthu & Ok, Yong Sik & Kwon, Eilhann E. & Rollon, Analiza P. & De Luna, Mark Danie, 2021. "A critical review on second- and third-generation bioethanol production using microwaved-assisted heating (MAH) pretreatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    8. Yanyi Zhu & Youpei Hu, 2023. "The Correlation between Urban Form and Carbon Emissions: A Bibliometric and Literature Review," Sustainability, MDPI, vol. 15(18), pages 1-28, September.
    9. Luís Cortez & Telma Teixeira Franco & Gustavo Valença & Frank Rosillo-Calle, 2021. "Perspective Use of Fast Pyrolysis Bio-Oil (FPBO) in Maritime Transport: The Case of Brazil," Energies, MDPI, vol. 14(16), pages 1-16, August.
    10. Singh, Neeraj Kumar & Singh, Rajesh, 2022. "Co-factors applicability in hydrogen production from rice straw hydrolysate in a bioelectrochemical system," Energy, Elsevier, vol. 255(C).
    11. Cheng, Jie & Hu, Sheng-Chun & Geng, Zeng-Chao & Zhu, Ming-Qiang, 2022. "Effect of structural changes of lignin during the microwave-assisted alkaline/ethanol pretreatment on cotton stalk for an effective enzymatic hydrolysis," Energy, Elsevier, vol. 254(PB).
    12. Matheus Andrade & Morsinaldo Medeiros & Thaís Medeiros & Mariana Azevedo & Marianne Silva & Daniel G. Costa & Ivanovitch Silva, 2024. "On the Use of Biofuels for Cleaner Cities: Assessing Vehicular Pollution through Digital Twins and Machine Learning Algorithms," Sustainability, MDPI, vol. 16(2), pages 1-22, January.
    13. Sanjeev Kumar Soni & Binny Sharma & Apurav Sharma & Bishakha Thakur & Raman Soni, 2023. "Exploring the Potential of Potato Peels for Bioethanol Production through Various Pretreatment Strategies and an In-House-Produced Multi-Enzyme System," Sustainability, MDPI, vol. 15(11), pages 1-19, June.
    14. He Zhang & Jingyi Peng & Rui Wang & Yuanyuan Guo & Jing He & Dahlia Yu & Jianxun Zhang, 2023. "Efficiency and Potential Evaluation to Promote Differentiated Low-Carbon Management in Chinese Counties," IJERPH, MDPI, vol. 20(4), pages 1-19, February.
    15. Melendez, Jesus R. & Mátyás, Bence & Hena, Sufia & Lowy, Daniel A. & El Salous, Ahmed, 2022. "Perspectives in the production of bioethanol: A review of sustainable methods, technologies, and bioprocesses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    16. Yang, Yang & Liang, Sai & Yang, Yi & Xie, Guang Hui & Zhao, Wei, 2022. "Spatial disparity of life-cycle greenhouse gas emissions from corn straw-based bioenergy production in China," Applied Energy, Elsevier, vol. 305(C).
    17. Ning, Yaodong & Liu, Xiangju, 2020. "Enteromorpha hydrolysate as carbon source for fatty acids production of microalgae Schizochytrium sp," Energy, Elsevier, vol. 203(C).
    18. Gareth Griffiths & Abul Kalam Hossain & Vikas Sharma & Ganesh Duraisamy, 2021. "Key Targets for Improving Algal Biofuel Production," Clean Technol., MDPI, vol. 3(4), pages 1-32, October.
    19. Chong, Ting Yen & Cheah, Siang Aun & Ong, Chin Tye & Wong, Lee Yi & Goh, Chern Rui & Tan, Inn Shi & Foo, Henry Chee Yew & Lam, Man Kee & Lim, Steven, 2020. "Techno-economic evaluation of third-generation bioethanol production utilizing the macroalgae waste: A case study in Malaysia," Energy, Elsevier, vol. 210(C).
    20. Apurav Sharma & Sakshi Dogra & Bishakha Thakur & Jyoti Yadav & Raman Soni & Sanjeev Kumar Soni, 2023. "Separate Hydrolysis and Fermentation of Kitchen Waste Residues Using Multi-Enzyme Preparation from Aspergillus niger P-19 for the Production of Biofertilizer Formulations," Sustainability, MDPI, vol. 15(12), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:608-:d:1316559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.