IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v191y2022icp493-509.html
   My bibliography  Save this article

Mapping the sustainability of bioenergy to maximise benefits, mitigate risks and drive progress toward the Sustainable Development Goals

Author

Listed:
  • Welfle, Andrew
  • Röder, Mirjam

Abstract

Demand for biomass resources will continue to grow as bioenergy is increasingly targeted within energy strategies. Sustainability is a primary issue for large scale bioenergy, with potential to generate both risks and benefits for people, development, natural systems and for climate change – this balance of risks and benefits determining overall sustainability performance. A new sustainability mapping framework is introduced that provides a flexible tool (BSIM) to map the performances of biomass resources, supply chains, technologies and/or whole value chains against 126 indicators of sustainability. Sustainability maps are developed and assessments undertaken for case studies in the UK and Colombia. This research finds sustainability of bioenergy covers far more issues than those targeted within legislation – where land, carbon and biodiversity are prioritised. Mapping sustainability is a valuable tool to identify the leading risks and benefits to enable targeted actions to mitigate risks and to maximise and promote benefits. Mapping sustainability at different resolutions and analysing the trade-offs enables greater rationalisation of potential risks through also identifying the potential broader benefits gained. Bioenergy is intrinsically linked to the SDGs more so than other renewable technologies and should be used as a mechanism to drive sustainable development.

Suggested Citation

  • Welfle, Andrew & Röder, Mirjam, 2022. "Mapping the sustainability of bioenergy to maximise benefits, mitigate risks and drive progress toward the Sustainable Development Goals," Renewable Energy, Elsevier, vol. 191(C), pages 493-509.
  • Handle: RePEc:eee:renene:v:191:y:2022:i:c:p:493-509
    DOI: 10.1016/j.renene.2022.03.150
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122004463
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.03.150?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Valdez-Vazquez, Idania & del Rosario Sánchez Gastelum, Carolina & Escalante, Ana E., 2017. "Proposal for a sustainability evaluation framework for bioenergy production systems using the MESMIS methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 360-369.
    2. Brinkman, Marnix L.J. & Wicke, Birka & Faaij, André P.C. & van der Hilst, Floor, 2019. "Projecting socio-economic impacts of bioenergy: Current status and limitations of ex-ante quantification methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Shu, Kesheng & Schneider, Uwe A. & Scheffran, Jürgen, 2017. "Optimizing the bioenergy industry infrastructure: Transportation networks and bioenergy plant locations," Applied Energy, Elsevier, vol. 192(C), pages 247-261.
    4. Bo Xiong & John C. Beghin, 2017. "Stringent Maximum Residue Limits, Protectionism, and Competitiveness: The Cases of the US and Canada," World Scientific Book Chapters, in: John Christopher Beghin (ed.), Nontariff Measures and International Trade, chapter 12, pages 193-207, World Scientific Publishing Co. Pte. Ltd..
    5. Welfle, Andrew & Gilbert, Paul & Thornley, Patricia, 2014. "Securing a bioenergy future without imports," Energy Policy, Elsevier, vol. 68(C), pages 1-14.
    6. Ramirez-Contreras, Nidia Elizabeth & Faaij, André P.C., 2018. "A review of key international biomass and bioenergy sustainability frameworks and certification systems and their application and implications in Colombia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 460-478.
    7. Claudiu Cicea & Corina Marinescu & Nicolae Pintilie, 2021. "New Methodological Approach for Performance Assessment in the Bioenergy Field," Energies, MDPI, vol. 14(4), pages 1-19, February.
    8. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    9. Koizumi, Tatsuji, 2013. "Biofuel and food security in China and Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 102-109.
    10. Mai-Moulin, T. & Hoefnagels, R. & Grundmann, P. & Junginger, M., 2021. "Effective sustainability criteria for bioenergy: Towards the implementation of the european renewable directive II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    11. Konadu, D. Dennis & Mourão, Zenaida Sobral & Allwood, Julian M. & Richards, Keith S. & Kopec, Grant & McMahon, Richard & Fenner, Richard, 2015. "Land use implications of future energy system trajectories—The case of the UK 2050 Carbon Plan," Energy Policy, Elsevier, vol. 86(C), pages 328-337.
    12. Elobeid, Amani & Carriquiry, Miguel A. & Demotier, Jerome & Rosas, Juan (Francisco) & Mulik, Kranti & Fabiosa, Jacinto F. & Hayes, Dermot J. & Babcock, Bruce A., 2013. "Biofuel Expansion, Fertilizer Use and GHG Emissions: Unintended Consequences of Mitigation Policies," Staff General Research Papers Archive 37415, Iowa State University, Department of Economics.
    13. Primmer, Eeva & Varumo, Liisa & Krause, Torsten & Orsi, Francesco & Geneletti, Davide & Brogaard, Sara & Aukes, Ewert & Ciolli, Marco & Grossmann, Carol & Hernández-Morcillo, Mónica & Kister, Jutta , 2021. "Mapping Europe’s institutional landscape for forest ecosystem service provision, innovations and governance," Ecosystem Services, Elsevier, vol. 47(C).
    14. Mohr, Alison & Raman, Sujatha, 2013. "Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels," Energy Policy, Elsevier, vol. 63(C), pages 114-122.
    15. Fabian Stenzel & Peter Greve & Wolfgang Lucht & Sylvia Tramberend & Yoshihide Wada & Dieter Gerten, 2021. "Irrigation of biomass plantations may globally increase water stress more than climate change," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    16. Destek, Mehmet Akif & Sarkodie, Samuel Asumadu & Asamoah, Ernest Frimpong, 2020. "Does biomass energy drive environmental sustainability? An SDG perspective for top five biomass consuming countries," MPRA Paper 114218, University Library of Munich, Germany, revised 29 Mar 2021.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu-Ling Sun & Chun-Hua Zhang & Ying-Jie Lian & Jia-Min Zhao, 2022. "Exploring the Global Research Trends of Cities and Climate Change Based on a Bibliometric Analysis," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    2. Lucarelli, Giuseppe & Genovese, Matteo & Florio, Gaetano & Fragiacomo, Petronilla, 2023. "3E (energy, economic, environmental) multi-objective optimization of CCHP industrial plant: Investigation of the optimal technology and the optimal operating strategy," Energy, Elsevier, vol. 278(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dumortier, Jerome & Elobeid, Amani, 2021. "Effects of a carbon tax in the United States on agricultural markets and carbon emissions from land-use change," Land Use Policy, Elsevier, vol. 103(C).
    2. Miguel Carriquiry & Amani Elobeid & Jerome Dumortier & Ryan Goodrich, 2020. "Incorporating Sub‐National Brazilian Agricultural Production and Land‐Use into U.S. Biofuel Policy Evaluation," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 42(3), pages 497-523, September.
    3. Catherine L. Kling & Raymond W. Arritt & Gray Calhoun & David A. Keiser, 2017. "Integrated Assessment Models of the Food, Energy, and Water Nexus: A Review and an Outline of Research Needs," Annual Review of Resource Economics, Annual Reviews, vol. 9(1), pages 143-163, October.
    4. Catherine L. Kling & Raymond W. Arritt & Gray Calhoun & David A. Keiser, 2016. "Research Needs and Challenges in the FEW System: Coupling Economic Models with Agronomic, Hydrologic, and Bioenergy Models for Sustainable Food, Energy, and Water Systems," Center for Agricultural and Rural Development (CARD) Publications 16-wp563, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    5. Dumortier, Jerome & Carriquiry, Miguel & Elobeid, Amani, 2021. "Where does all the biofuel go? Fuel efficiency gains and its effects on global agricultural production," Energy Policy, Elsevier, vol. 148(PA).
    6. Stephen M. Ogle & Bruce A. McCarl & Justin Baker & Stephen J. Grosso & Paul R. Adler & Keith Paustian & William J. Parton, 2016. "Managing the nitrogen cycle to reduce greenhouse gas emissions from crop production and biofuel expansion," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(8), pages 1197-1212, December.
    7. Jerome Dumortier & Amani Elobeid, 2020. "Effects of the Energy Innovation and Carbon Dividend Act on U.S. and Global Agricultural Markets," Center for Agricultural and Rural Development (CARD) Publications 20-wp598, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    8. Ji, Xi & Long, Xianling, 2016. "A review of the ecological and socioeconomic effects of biofuel and energy policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 41-52.
    9. German, Laura & Goetz, Ariane & Searchinger, Tim & Oliveira, Gustavo de L.T. & Tomei, Julia & Hunsberger, Carol & Weigelt, Jes, 2017. "Sine Qua Nons of sustainable biofuels: Distilling implications of under-performance for national biofuel programs," Energy Policy, Elsevier, vol. 108(C), pages 806-817.
    10. Mellor, P. & Lord, R.A. & João, E. & Thomas, R. & Hursthouse, A., 2021. "Identifying non-agricultural marginal lands as a route to sustainable bioenergy provision - A review and holistic definition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Renzaho, Andre M.N. & Kamara, Joseph K. & Toole, Michael, 2017. "Biofuel production and its impact on food security in low and middle income countries: Implications for the post-2015 sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 503-516.
    12. Jiashun Huang & Weiping Li & Xijie Huang & Lijia Guo, 2017. "Analysis of the Relative Sustainability of Land Devoted to Bioenergy: Comparing Land-Use Alternatives in China," Sustainability, MDPI, vol. 9(5), pages 1-13, May.
    13. Goetz, Ariane & German, Laura & Hunsberger, Carol & Schmidt, Oscar, 2017. "Do no harm? Risk perceptions in national bioenergy policies and actual mitigation performance," Energy Policy, Elsevier, vol. 108(C), pages 776-790.
    14. Oludunsin Arodudu & Katharina Helming & Hubert Wiggering & Alexey Voinov, 2016. "Bioenergy from Low-Intensity Agricultural Systems: An Energy Efficiency Analysis," Energies, MDPI, vol. 10(1), pages 1-18, December.
    15. Heinrichs, H.U. & Mourao, Z. & Venghaus, S. & Konadu, D. & Gillessen, B. & Vögele, S. & Linssen, J. & Allwood, J. & Kuckshinrichs, W. & Robinius, M. & Stolten, D., 2021. "Analysing the water and land system impacts of Germany's future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    16. Maria Skorupka & Artur Nosalewicz, 2021. "Ammonia Volatilization from Fertilizer Urea—A New Challenge for Agriculture and Industry in View of Growing Global Demand for Food and Energy Crops," Agriculture, MDPI, vol. 11(9), pages 1-15, August.
    17. Monteleone, Massimo & Cammerino, Anna Rita Bernadette & Libutti, Angela, 2018. "Agricultural “greening” and cropland diversification trends: Potential contribution of agroenergy crops in Capitanata (South Italy)," Land Use Policy, Elsevier, vol. 70(C), pages 591-600.
    18. Holland, Robert A. & Scott, Kate & Hinton, Emma D. & Austen, Melanie C. & Barrett, John & Beaumont, Nicola & Blaber-Wegg, Tina & Brown, Gareth & Carter-Silk, Eleanor & Cazenave, Pierre & Eigenbrod, Fe, 2016. "Bridging the gap between energy and the environment," Energy Policy, Elsevier, vol. 92(C), pages 181-189.
    19. Kung, Chih-Chun & Zhang, Ning, 2015. "Renewable energy from pyrolysis using crops and agricultural residuals: An economic and environmental evaluation," Energy, Elsevier, vol. 90(P2), pages 1532-1544.
    20. Holland, R.A. & Eigenbrod, F. & Muggeridge, A. & Brown, G. & Clarke, D. & Taylor, G., 2015. "A synthesis of the ecosystem services impact of second generation bioenergy crop production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 30-40.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:191:y:2022:i:c:p:493-509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.