IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v316y2025ics0360544225001343.html
   My bibliography  Save this article

Assessment and enhancement pathways of the water-energy-food-economy-ecosystem nexus in China's yellow river basin

Author

Listed:
  • Zhang, Chenjun
  • Wei, Yaqiu
  • Zhao, Xiangyang
  • Hu, Jinren

Abstract

Expanding the traditional Water-Energy-Food (WEF) Nexus to a Water-Energy-Food-Economy-Ecosystem (WEFEE) Nexus can facilitate a more scientific and comprehensive evaluation of a region's sustainable development level. This paper employed a slacks-based measure super-efficiency (Super-SBM) Network Data Envelopment Analysis (DEA) model to measure the efficiency of the WEFEE system and agricultural water saving in the Yellow River Basin (YRB) from 2005 to 2022. Subsequently, multiple scenarios were set up, and a Grey Elman Neural Network Model based on Genetic Algorithm (GM-GA-Elman) was designed to predict the efficiency. The study showed that: (1) The introduction of economy and ecosystem into the WEF system to form the WEFEE system resulted in a significant increase in efficiency; (2) The efficiency of the WEFEE system in the YRB had been at a relatively high level from 2005 to 2022, while the agricultural water-saving efficiency generally low; (3) The GM-GA-Elman model demonstrated a commendable capability in forecasting the efficiency metrics and tendencies of the WEFEE system within the YRB; (4) Scenario 4 was identified as the optimal scenario of the WEFEE system. Scenario 7 represented an optimal situation for agricultural water saving. Conflicts existed between the optimization of subsystem efficiencies and the overall efficiency of the WEFEE Nexus.

Suggested Citation

  • Zhang, Chenjun & Wei, Yaqiu & Zhao, Xiangyang & Hu, Jinren, 2025. "Assessment and enhancement pathways of the water-energy-food-economy-ecosystem nexus in China's yellow river basin," Energy, Elsevier, vol. 316(C).
  • Handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225001343
    DOI: 10.1016/j.energy.2025.134492
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225001343
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134492?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fare, Rolf & Grosskopf, Shawna, 1996. "Productivity and intermediate products: A frontier approach," Economics Letters, Elsevier, vol. 50(1), pages 65-70, January.
    2. Feng, Cuiyang & Qu, Shen & Jin, Yi & Tang, Xu & Liang, Sai & Chiu, Anthony S.F. & Xu, Ming, 2019. "Uncovering urban food-energy-water nexus based on physical input-output analysis: The case of the Detroit Metropolitan Area," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    3. Shah, Wasi Ul Hassan & Hao, Gang & Yasmeen, Rizwana & Yan, Hong & Qi, Ye, 2024. "Impact of agricultural technological innovation on total-factor agricultural water usage efficiency: Evidence from 31 Chinese Provinces," Agricultural Water Management, Elsevier, vol. 299(C).
    4. White, David J. & Hubacek, Klaus & Feng, Kuishuang & Sun, Laixiang & Meng, Bo, 2018. "The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis," Applied Energy, Elsevier, vol. 210(C), pages 550-567.
    5. Costanza, Robert & d'Arge, Ralph & de Groot, Rudolf & Farber, Stephen & Grasso, Monica & Hannon, Bruce & Limburg, Karin & Naeem, Shahid & O'Neill, Robert V. & Paruelo, Jose, 1998. "The value of the world's ecosystem services and natural capital," Ecological Economics, Elsevier, vol. 25(1), pages 3-15, April.
    6. Inas El-Gafy & Defne Apul, 2021. "Expanding the Dynamic Modeling of Water-Food-Energy Nexus to Include Environmental, Economic, and Social Aspects Based on Life Cycle Assessment Thinking," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4349-4362, October.
    7. Junfei Chen & Tonghui Ding & Huimin Wang & Xiaoya Yu, 2019. "Research on Total Factor Productivity and Influential Factors of the Regional Water–Energy–Food Nexus: A Case Study on Inner Mongolia, China," IJERPH, MDPI, vol. 16(17), pages 1-21, August.
    8. Zhang, Chenjun & Zhao, Xiangyang & Shi, Changfeng, 2024. "Efficiency assessment and scenario simulation of the water-energy-food system in the Yellow river basin, China," Energy, Elsevier, vol. 305(C).
    9. Zeng, Hang & Zhang, Hongmei & Guo, Jiansheng & Ren, Bo & Cui, Lijie & Wu, Jiangnan, 2024. "A novel hybrid STL-transformer-ARIMA architecture for aviation failure events prediction," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    10. Correa-Cano, M.E. & Salmoral, G. & Rey, D. & Knox, J.W. & Graves, A. & Melo, O. & Foster, W. & Naranjo, L. & Zegarra, E. & Johnson, C. & Viteri-Salazar, O. & Yan, X., 2022. "A novel modelling toolkit for unpacking the Water-Energy-Food-Environment (WEFE) nexus of agricultural development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    11. Shah, Wasi Ul Hassan & Hao, Gang & Yasmeen, Rizwana & Yan, Hong & Shen, Jintao & Lu, Yuting, 2023. "Role of China's agricultural water policy reforms and production technology heterogeneity on agriculture water usage efficiency and total factor productivity change," Agricultural Water Management, Elsevier, vol. 287(C).
    12. Lei, Lei & Shao, Suola & Liang, Lixia, 2024. "An evolutionary deep learning model based on EWKM, random forest algorithm, SSA and BiLSTM for building energy consumption prediction," Energy, Elsevier, vol. 288(C).
    13. Zhong, Weiyi & Zhai, Dengshuai & Xu, Wenran & Gong, Wenwen & Yan, Chao & Zhang, Yang & Qi, Lianyong, 2024. "Accurate and efficient daily carbon emission forecasting based on improved ARIMA," Applied Energy, Elsevier, vol. 376(PA).
    14. Yaya Feng & Fanglei Zhong & Chunlin Huang & Juan Gu & Yingchun Ge & Xiaoyu Song, 2020. "Spatiotemporal Distribution and the Driving Force of the Food-Energy-Water Nexus Index in Zhangye, Northwest China," Sustainability, MDPI, vol. 12(6), pages 1-21, March.
    15. Wang, Junjie & Ye, Li & Ding, Xiaoyu & Dang, Yaoguo, 2024. "A novel seasonal grey prediction model with time-lag and interactive effects for forecasting the photovoltaic power generation," Energy, Elsevier, vol. 304(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chenjun & Zhao, Xiangyang & Shi, Changfeng, 2024. "Efficiency assessment and scenario simulation of the water-energy-food system in the Yellow river basin, China," Energy, Elsevier, vol. 305(C).
    2. Manuel Morales-García & Miguel Á. García Rubio, 2024. "Sustainability of an economy from the water-energy-food nexus perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(2), pages 2811-2835, February.
    3. Wang, Saige & Chen, Bin, 2021. "Unraveling energy–water nexus paths in urban agglomeration: A case study of Beijing–Tianjin–Hebei," Applied Energy, Elsevier, vol. 304(C).
    4. Wang, Xue-Chao & Jiang, Peng & Yang, Lan & Fan, Yee Van & Klemeš, Jiří Jaromír & Wang, Yutao, 2021. "Extended water-energy nexus contribution to environmentally-related sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Meng, Fanxin & Wang, Dongfang & Meng, Xiaoyan & Li, Hui & Liu, Gengyuan & Yuan, Qiuling & Hu, Yuanchao & Zhang, Yi, 2022. "Mapping urban energy–water–land nexus within a multiscale economy: A case study of four megacities in China," Energy, Elsevier, vol. 239(PB).
    6. Yande Gong & Joe Zhu & Ya Chen & Wade D. Cook, 2018. "DEA as a tool for auditing: application to Chinese manufacturing industry with parallel network structures," Annals of Operations Research, Springer, vol. 263(1), pages 247-269, April.
    7. Matthias Klumpp & Dominic Loske, 2021. "Sustainability and Resilience Revisited: Impact of Information Technology Disruptions on Empirical Retail Logistics Efficiency," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    8. Yongqi Feng & Haolin Zhang & Yung-ho Chiu & Tzu-Han Chang, 2021. "Innovation efficiency and the impact of the institutional quality: a cross-country analysis using the two-stage meta-frontier dynamic network DEA model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3091-3129, April.
    9. Yu-Chuan Chen & Yung-Ho Chiu & Tzu-Han Chang & Tai-Yu Lin, 2023. "Sustainable Development, Government Efficiency, and People’s Happiness," Journal of Happiness Studies, Springer, vol. 24(4), pages 1549-1578, April.
    10. Hendrawan, Dienda C P & Musshoff, Oliver, 2022. "Oil Palm Smallholder Farmers' Livelihood Resilience and Decision Making in Replanting," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322441, Agricultural and Applied Economics Association.
    11. Qiong Xia & Min Li & Huaqing Wu & Zhenggang Lu, 2016. "Does the Central Government’s Environmental Policy Work? Evidence from the Provincial-Level Environment Efficiency in China," Sustainability, MDPI, vol. 8(12), pages 1-17, December.
    12. Simon, Jose & Simon, Clara & Arias, Alicia, 2011. "Changes in productivity of Spanish university libraries," Omega, Elsevier, vol. 39(5), pages 578-588, October.
    13. van der Hoff, Richard & Nascimento, Nathália & Fabrício-Neto, Ailton & Jaramillo-Giraldo, Carolina & Ambrosio, Geanderson & Arieira, Julia & Afonso Nobre, Carlos & Rajão, Raoni, 2022. "Policy-oriented ecosystem services research on tropical forests in South America: A systematic literature review," Ecosystem Services, Elsevier, vol. 56(C).
    14. Qian Wang & Zhuoya Du & Boyu Wang & Yung‐ho Chiu & Tzu‐Han Chang, 2022. "Environmental regulation and foreign direct investment attractiveness: Evidence from China provinces," Review of Development Economics, Wiley Blackwell, vol. 26(2), pages 899-917, May.
    15. Ruchuan Zhang & Aijun Li & Davo Ayuba Dahoro, 2024. "A new approach for vehicle-health system measurement by network data envelopment analysis and an application in the USA," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(6), pages 14693-14727, June.
    16. Xiao, Huijuan & Wang, Daoping & Qi, Yu & Shao, Shuai & Zhou, Ya & Shan, Yuli, 2021. "The governance-production nexus of eco-efficiency in Chinese resource-based cities: A two-stage network DEA approach," Energy Economics, Elsevier, vol. 101(C).
    17. Guan, Shihui & Han, Mengyao & Wu, Xiaofang & Guan, ChengHe & Zhang, Bo, 2019. "Exploring energy-water-land nexus in national supply chains: China 2012," Energy, Elsevier, vol. 185(C), pages 1225-1234.
    18. Evans, Nicole M. & Carrozzino-Lyon, Amy L. & Galbraith, Betsy & Noordyk, Julia & Peroff, Deidre M. & Stoll, John & Thompson, Aaron & Winden, Matthew W. & Davis, Mark A., 2019. "Integrated ecosystem service assessment for landscape conservation design in the Green Bay watershed, Wisconsin," Ecosystem Services, Elsevier, vol. 39(C).
    19. Desbureaux, Sébastien & Brimont, Laura, 2015. "Between economic loss and social identity: The multi-dimensional cost of avoiding deforestation in Eastern Madagascar," Ecological Economics, Elsevier, vol. 118(C), pages 10-20.
    20. Shrestha, Ram K. & Seidl, Andrew F. & Moraes, Andre S., 2002. "Value of recreational fishing in the Brazilian Pantanal: a travel cost analysis using count data models," Ecological Economics, Elsevier, vol. 42(1-2), pages 289-299, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225001343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.