IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v305y2024ics036054422402053x.html
   My bibliography  Save this article

Efficiency assessment and scenario simulation of the water-energy-food system in the Yellow river basin, China

Author

Listed:
  • Zhang, Chenjun
  • Zhao, Xiangyang
  • Shi, Changfeng

Abstract

Comprehending the efficiency of the Water-Energy-Food system within basins is crucial to enhance their resource utilization and facilitate high-quality development. This research evaluates the efficiency of the Water-Energy-Food (WEF) system in the Yellow River Basin between 2005 and 2021 using the super efficiency network Data Envelopment Analysis (DEA) model, addressing the limitation of traditional DEA models by considering both input and output within system. A multi-scenario combination is established under different development modalities, and an innovative attempt is made to introduce machine learning into efficiency prediction. The GA-LSTM (Genetic Algorithm-Long Short-Term Memory) model is constructed to forecast the efficiency values across multiple scenarios and identify the optimal scenario namely the scenario with the highest efficiency value, to carry out the spatial-temporal analysis. The results indicate that: (1) The WEF system efficiency in the Yellow River Basin exhibited a variable rising trajectory from 2005 to 2021, with the economic scale playing a significant role as an influencing element; (2) The trained GA-LSTM model can accurately predict the efficiency value and change trend of WEF system in the Yellow River Basin; (3) Under scenario 4 when water and food subsystems are maintained in the baseline scenario, while the energy subsystem is regulated in the general saving scenario, the overall average efficiency value of WEF system in the Yellow River Basin in 2022–2035 is the highest, reaching 1.28, which is the optimal enhancement path; (4) Under the optimal scenario, the WEF system efficiency in the Yellow River Basin increases by 6.89 % annually, with Shandong having the greatest efficiency level and Qinghai the lowest.

Suggested Citation

  • Zhang, Chenjun & Zhao, Xiangyang & Shi, Changfeng, 2024. "Efficiency assessment and scenario simulation of the water-energy-food system in the Yellow river basin, China," Energy, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:energy:v:305:y:2024:i:c:s036054422402053x
    DOI: 10.1016/j.energy.2024.132279
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422402053X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132279?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fare, Rolf & Grosskopf, Shawna, 1996. "Productivity and intermediate products: A frontier approach," Economics Letters, Elsevier, vol. 50(1), pages 65-70, January.
    2. Hua, En & Han, Xinxueqi & Bai, Yawen & Engel, Bernard A. & Li, Xin & Sun, Shikun & Wang, Yubao, 2023. "Synergy of water use in water-energy-food nexus from a symbiosis perspective: A case study in China," Energy, Elsevier, vol. 283(C).
    3. Feng, Cuiyang & Qu, Shen & Jin, Yi & Tang, Xu & Liang, Sai & Chiu, Anthony S.F. & Xu, Ming, 2019. "Uncovering urban food-energy-water nexus based on physical input-output analysis: The case of the Detroit Metropolitan Area," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    4. White, David J. & Hubacek, Klaus & Feng, Kuishuang & Sun, Laixiang & Meng, Bo, 2018. "The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis," Applied Energy, Elsevier, vol. 210(C), pages 550-567.
    5. Pan, Xiongfeng & Li, Jinming, 2023. "Measurements and spatio-temporal evolution of regional energy efficiency convergence in China," Energy, Elsevier, vol. 284(C).
    6. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Analysis of energy-related CO2 (carbon dioxide) emissions and reduction potential in the Chinese non-metallic mineral products industry," Energy, Elsevier, vol. 68(C), pages 688-697.
    7. Gu, Donglin & Guo, Jiahang & Fan, Yurui & Zuo, Qiting & Yu, Lei, 2022. "Evaluating water-energy-food system of Yellow River basin based on type-2 fuzzy sets and Pressure-State-Response model," Agricultural Water Management, Elsevier, vol. 267(C).
    8. Yin, Linfei & Tao, Min, 2023. "Balanced broad learning prediction model for carbon emissions of integrated energy systems considering distributed ground source heat pump heat storage systems and carbon capture & storage," Applied Energy, Elsevier, vol. 329(C).
    9. Zamanipour, Behzad & Ghadaksaz, Hesam & Keppo, Ilkka & Saboohi, Yadollah, 2023. "Electricity supply and demand dynamics in Iran considering climate change-induced stresses," Energy, Elsevier, vol. 263(PE).
    10. Oviroh, Peter Ozaveshe & Austin-Breneman, Jesse & Chien, Cheng-Chun & Chakravarthula, Praneet Nallan & Harikumar, Vaishnavi & Shiva, Pranjal & Kimbowa, Alvin Bagetuuma & Luntz, Jonathan & Miyingo, Emm, 2023. "Micro Water-Energy-Food (MicroWEF) Nexus: A system design optimization framework for Integrated Natural Resource Conservation and Development (INRCD) projects at community scale," Applied Energy, Elsevier, vol. 333(C).
    11. Lei, Lei & Shao, Suola & Liang, Lixia, 2024. "An evolutionary deep learning model based on EWKM, random forest algorithm, SSA and BiLSTM for building energy consumption prediction," Energy, Elsevier, vol. 288(C).
    12. Inas El-Gafy & Defne Apul, 2021. "Expanding the Dynamic Modeling of Water-Food-Energy Nexus to Include Environmental, Economic, and Social Aspects Based on Life Cycle Assessment Thinking," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4349-4362, October.
    13. Yaya Feng & Fanglei Zhong & Chunlin Huang & Juan Gu & Yingchun Ge & Xiaoyu Song, 2020. "Spatiotemporal Distribution and the Driving Force of the Food-Energy-Water Nexus Index in Zhangye, Northwest China," Sustainability, MDPI, vol. 12(6), pages 1-21, March.
    14. Khan, Zarrar & Linares, Pedro & Rutten, Martine & Parkinson, Simon & Johnson, Nils & García-González, Javier, 2018. "Spatial and temporal synchronization of water and energy systems: Towards a single integrated optimization model for long-term resource planning," Applied Energy, Elsevier, vol. 210(C), pages 499-517.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng, Fanxin & Wang, Dongfang & Meng, Xiaoyan & Li, Hui & Liu, Gengyuan & Yuan, Qiuling & Hu, Yuanchao & Zhang, Yi, 2022. "Mapping urban energy–water–land nexus within a multiscale economy: A case study of four megacities in China," Energy, Elsevier, vol. 239(PB).
    2. Wang, Saige & Chen, Bin, 2021. "Unraveling energy–water nexus paths in urban agglomeration: A case study of Beijing–Tianjin–Hebei," Applied Energy, Elsevier, vol. 304(C).
    3. Wang, Xue-Chao & Jiang, Peng & Yang, Lan & Fan, Yee Van & Klemeš, Jiří Jaromír & Wang, Yutao, 2021. "Extended water-energy nexus contribution to environmentally-related sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Zhou, Yanlai & Chang, Fi-John & Chang, Li-Chiu & Herricks, Edwin, 2024. "Elevating urban sustainability: An intelligent framework for optimizing water-energy-food nexus synergies in metabolic landscapes," Applied Energy, Elsevier, vol. 360(C).
    5. Yunlong Zhao & Geng Kong & Chin Hao Chong & Linwei Ma & Zheng Li & Weidou Ni, 2021. "How to Effectively Control Energy Consumption Growth in China’s 29 Provinces: A Paradigm of Multi-Regional Analysis Based on EAALMDI Method," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    6. Chunxia Gao & Zhaoyan Zhang & Peiguang Wang, 2023. "Day-Ahead Scheduling Strategy Optimization of Electric–Thermal Integrated Energy System to Improve the Proportion of New Energy," Energies, MDPI, vol. 16(9), pages 1-30, April.
    7. Reza Sobhani & Alireza Emadi & Ramin Fazloula & Sarvin Zamanzad-Ghavidel, 2024. "Development of groundwater poverty index focusing on agricultural and industrial perspectives in West Azerbaijan Province, Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 16555-16583, July.
    8. Hadi Ghafoorian & NikIntan Norhan & Mohammed Ndaliman Abubakar & Fazel Mohammadi Nodeh, 2013. "Efficiency Considering Credit Risk in Banking Industry, Using Two-stage DEA," Journal of Social and Development Sciences, AMH International, vol. 4(8), pages 356-360.
    9. Yande Gong & Joe Zhu & Ya Chen & Wade D. Cook, 2018. "DEA as a tool for auditing: application to Chinese manufacturing industry with parallel network structures," Annals of Operations Research, Springer, vol. 263(1), pages 247-269, April.
    10. Matthias Klumpp & Dominic Loske, 2021. "Sustainability and Resilience Revisited: Impact of Information Technology Disruptions on Empirical Retail Logistics Efficiency," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    11. Yongqi Feng & Haolin Zhang & Yung-ho Chiu & Tzu-Han Chang, 2021. "Innovation efficiency and the impact of the institutional quality: a cross-country analysis using the two-stage meta-frontier dynamic network DEA model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3091-3129, April.
    12. Ehsan Qasemipour & Ali Abbasi & Farhad Tarahomi, 2020. "Water-Saving Scenarios Based on Input–Output Analysis and Virtual Water Concept: A Case in Iran," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    13. Yu-Chuan Chen & Yung-Ho Chiu & Tzu-Han Chang & Tai-Yu Lin, 2023. "Sustainable Development, Government Efficiency, and People’s Happiness," Journal of Happiness Studies, Springer, vol. 24(4), pages 1549-1578, April.
    14. Koh, Rachel & Kern, Jordan & Galelli, Stefano, 2022. "Hard-coupling water and power system models increases the complementarity of renewable energy sources," Applied Energy, Elsevier, vol. 321(C).
    15. Chi-Yo Huang & Min-Jen Yang & Jeen-Fong Li & Hueiling Chen, 2021. "A DANP-Based NDEA-MOP Approach to Evaluating the Patent Commercialization Performance of Industry–Academic Collaborations," Mathematics, MDPI, vol. 9(18), pages 1-26, September.
    16. Yang, Lin & Lv, Haodong & Jiang, Dalin & Fan, Jingli & Zhang, Xian & He, Weijun & Zhou, Jinsheng & Wu, Wenjing, 2020. "Whether CCS technologies will exacerbate the water crisis in China? —A full life-cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    17. Thijs ten Raa & Pierre Mohnen, 2009. "Neoclassical Growth Accounting and Frontier Analysis: A Synthesis," World Scientific Book Chapters, in: Input–Output Economics: Theory And Applications Featuring Asian Economies, chapter 19, pages 347-370, World Scientific Publishing Co. Pte. Ltd..
    18. Wang, Miao & Feng, Chao, 2017. "Analysis of energy-related CO2 emissions in China’s mining industry: Evidence and policy implications," Resources Policy, Elsevier, vol. 53(C), pages 77-87.
    19. Qiong Xia & Min Li & Huaqing Wu & Zhenggang Lu, 2016. "Does the Central Government’s Environmental Policy Work? Evidence from the Provincial-Level Environment Efficiency in China," Sustainability, MDPI, vol. 8(12), pages 1-17, December.
    20. Bao-Ngoc Tong & Cheng-Ping Cheng & Lien-Wen Liang & Yi-Jun Liu, 2023. "Using Network DEA to Explore the Effect of Mobile Payment on Taiwanese Bank Efficiency," Sustainability, MDPI, vol. 15(8), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:305:y:2024:i:c:s036054422402053x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.