IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v284y2023ics0360544223019151.html
   My bibliography  Save this article

The congestion cost of pipeline networks under third-party access in China's natural gas market

Author

Listed:
  • Wei, Qi
  • Zhou, Peng
  • Shi, Xunpeng

Abstract

The consolidation of natural gas pipelines and the implementation of Third-Party Access (TPA) are two critical conditions of gas market liberalization that are being implemented in China, but their full impacts are insufficiently understood. This study employs a natural gas market equilibrium model to explore the utilization rate and congestion cost of China's long-distance pipelines, considering the economic properties of the pipelines. Except for the producer and the ending consumer, we envision the trader as a new agent based on the implementation of the TPA and improve the marketing behaviors of independent pipeline and storage operator agents covered in previous studies by adding independent transportation service and seasonal arbitrage. The results show that while the total utilization rate of long-distance pipelines is 87%, many pipeline segments are congested, which suggests that China's long-distance pipeline network has the potential for optimization. By introducing the congestion fee, this study identifies the pipelines that need structural optimization and capacity expansion. The results of this paper suggest that optimizing existing pipeline networks, deepening market liberalization, and developing a functional storage sector should be prioritized in China's gas market development.

Suggested Citation

  • Wei, Qi & Zhou, Peng & Shi, Xunpeng, 2023. "The congestion cost of pipeline networks under third-party access in China's natural gas market," Energy, Elsevier, vol. 284(C).
  • Handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223019151
    DOI: 10.1016/j.energy.2023.128521
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223019151
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128521?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gabriel, Steven A. & Zhuang, Jifang & Kiet, Supat, 2005. "A large-scale linear complementarity model of the North American natural gas market," Energy Economics, Elsevier, vol. 27(4), pages 639-665, July.
    2. Avraam, Charalampos & Bistline, John E.T. & Brown, Maxwell & Vaillancourt, Kathleen & Siddiqui, Sauleh, 2021. "North American natural gas market and infrastructure developments under different mechanisms of renewable policy coordination," Energy Policy, Elsevier, vol. 148(PB).
    3. Feijoo, Felipe & Huppmann, Daniel & Sakiyama, Larissa & Siddiqui, Sauleh, 2016. "North American natural gas model: Impact of cross-border trade with Mexico," Energy, Elsevier, vol. 112(C), pages 1084-1095.
    4. Jing Xu & Michelle Hallack & Miguel Vazquez, 2017. "Applying a third party access model for China’s gas pipeline network: an independent pipeline operator and congestion rent transfer," Journal of Regulatory Economics, Springer, vol. 51(1), pages 72-97, February.
    5. Dong, Kangyin & Sun, Renjin & Wu, Jin & Hochman, Gal, 2018. "The growth and development of natural gas supply chains: The case of China and the US," Energy Policy, Elsevier, vol. 123(C), pages 64-71.
    6. Sesini, Marzia & Giarola, Sara & Hawkes, Adam D., 2020. "The impact of liquefied natural gas and storage on the EU natural gas infrastructure resilience," Energy, Elsevier, vol. 209(C).
    7. Gürsan, C. & de Gooyert, V., 2021. "The systemic impact of a transition fuel: Does natural gas help or hinder the energy transition?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    8. Egging, Ruud & Holz, Franziska, 2016. "Risks in global natural gas markets: Investment, hedging and trade," Energy Policy, Elsevier, vol. 94(C), pages 468-479.
    9. Egging, Rudolf G. & Gabriel, Steven A., 2006. "Examining market power in the European natural gas market," Energy Policy, Elsevier, vol. 34(17), pages 2762-2778, November.
    10. Guo, Yingjian & Hawkes, Adam, 2018. "Simulating the game-theoretic market equilibrium and contract-driven investment in global gas trade using an agent-based method," Energy, Elsevier, vol. 160(C), pages 820-834.
    11. Lochner, Stefan, 2011. "Identification of congestion and valuation of transport infrastructures in the European natural gas market," Energy, Elsevier, vol. 36(5), pages 2483-2492.
    12. Avraam, Charalampos & Chu, Daniel & Siddiqui, Sauleh, 2020. "Natural gas infrastructure development in North America under integrated markets," Energy Policy, Elsevier, vol. 147(C).
    13. Shiono, Naoshi & Suzuki, Hisatoshi, 2016. "Optimal pipe-sizing problem of tree-shaped gas distribution networks," European Journal of Operational Research, Elsevier, vol. 252(2), pages 550-560.
    14. Gong, Chengzhu & Wu, Desheng & Gong, Nianjiao & Qi, Rui, 2020. "Multi-agent mixed complementary simulation of natural gas upstream market liberalization in China," Energy, Elsevier, vol. 200(C).
    15. Conrado Borraz-Sánchez & Russell Bent & Scott Backhaus & Hassan Hijazi & Pascal Van Hentenryck, 2016. "Convex Relaxations for Gas Expansion Planning," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 645-656, November.
    16. Lin, Boqiang & Xu, Mengmeng, 2019. "Good subsidies or bad subsidies? Evidence from low-carbon transition in China's metallurgical industry," Energy Economics, Elsevier, vol. 83(C), pages 52-60.
    17. Huppmann, Daniel & Egging, Ruud, 2014. "Market power, fuel substitution and infrastructure – A large-scale equilibrium model of global energy markets," Energy, Elsevier, vol. 75(C), pages 483-500.
    18. Kemfert, Claudia & Präger, Fabian & Braunger, Isabell & Hoffart, Franziska M. & Brauers, Hanna, 2022. "The expansion of natural gas infrastructure puts energy transitions at risk," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 7, pages 582-587.
    19. Rioux, Bertrand & Galkin, Philipp & Murphy, Frederic & Feijoo, Felipe & Pierru, Axel & Malov, Artem & Li, Yan & Wu, Kang, 2019. "The economic impact of price controls on China's natural gas supply chain," Energy Economics, Elsevier, vol. 80(C), pages 394-410.
    20. Steven A. Gabriel & Supat Kiet & Jifang Zhuang, 2005. "A Mixed Complementarity-Based Equilibrium Model of Natural Gas Markets," Operations Research, INFORMS, vol. 53(5), pages 799-818, October.
    21. Dong, Xiucheng & Pi, Guanglin & Ma, Zhengwei & Dong, Cong, 2017. "The reform of the natural gas industry in the PR of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 582-593.
    22. Qin, Yue & Tong, Fan & Yang, Guang & Mauzerall, Denise L., 2018. "Challenges of using natural gas as a carbon mitigation option in China," Energy Policy, Elsevier, vol. 117(C), pages 457-462.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gong, Chengzhu & Wu, Desheng & Gong, Nianjiao & Qi, Rui, 2020. "Multi-agent mixed complementary simulation of natural gas upstream market liberalization in China," Energy, Elsevier, vol. 200(C).
    2. Jia, Weidong & Gong, Chengzhu & Pan, Kai & Yu, Shiwei, 2023. "Potential changes of regional natural gas market in China amidst liberalization: A mixed complementarity equilibrium simulation in 2030," Energy, Elsevier, vol. 284(C).
    3. Wang, Xiaolin & Qiu, Yangyang & Chen, Jun & Hu, Xiangping, 2022. "Evaluating natural gas supply security in China: An exhaustible resource market equilibrium model," Resources Policy, Elsevier, vol. 76(C).
    4. Arriet, Andrea & Matis, Timothy I. & Feijoo, Felipe, 2023. "Water taxation strategies for the natural gas sector in North America: Facing a rising water crisis," Energy, Elsevier, vol. 279(C).
    5. Egging-Bratseth, Ruud & Baltensperger, Tobias & Tomasgard, Asgeir, 2020. "Solving oligopolistic equilibrium problems with convex optimization," European Journal of Operational Research, Elsevier, vol. 284(1), pages 44-52.
    6. Devine, Mel T. & Russo, Marianna, 2019. "Liquefied natural gas and gas storage valuation: Lessons from the integrated Irish and UK markets," Applied Energy, Elsevier, vol. 238(C), pages 1389-1406.
    7. Feijoo, Felipe & Huppmann, Daniel & Sakiyama, Larissa & Siddiqui, Sauleh, 2016. "North American natural gas model: Impact of cross-border trade with Mexico," Energy, Elsevier, vol. 112(C), pages 1084-1095.
    8. Feijoo, Felipe & Iyer, Gokul C. & Avraam, Charalampos & Siddiqui, Sauleh A. & Clarke, Leon E. & Sankaranarayanan, Sriram & Binsted, Matthew T. & Patel, Pralit L. & Prates, Nathalia C. & Torres-Alfaro,, 2018. "The future of natural gas infrastructure development in the United states," Applied Energy, Elsevier, vol. 228(C), pages 149-166.
    9. Rioux, Bertrand & Shabaneh, Rami & Griffiths, Steven, 2021. "An economic analysis of gas pipeline trade cooperation in the GCC," Energy Policy, Elsevier, vol. 157(C).
    10. Boute, Anatole & Fang, Mandy Meng, 2022. "China's textbook approach to regulatory reform of the natural gas market," Utilities Policy, Elsevier, vol. 76(C).
    11. Devine, Mel & Russo, Marianna, 2018. "LNG and gas storage optimisation and valuation: lessons from the integrated Irish and UK markets," Papers WP606, Economic and Social Research Institute (ESRI).
    12. Shuguang Liu & Jiayi Wang & Yin Long, 2023. "Research into the Spatiotemporal Characteristics and Influencing Factors of Technological Innovation in China’s Natural Gas Industry from the Perspective of Energy Transition," Sustainability, MDPI, vol. 15(9), pages 1-34, April.
    13. Zhou, Zhongbing & Qin, Quande, 2020. "Decoding China's natural gas development: A critical discourse analysis of the five-year plans," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    14. Rioux, Bertrand & Galkin, Philipp & Murphy, Frederic & Feijoo, Felipe & Pierru, Axel & Malov, Artem & Li, Yan & Wu, Kang, 2019. "The economic impact of price controls on China's natural gas supply chain," Energy Economics, Elsevier, vol. 80(C), pages 394-410.
    15. Guo, Yingjian & Hawkes, Adam, 2019. "Asset stranding in natural gas export facilities: An agent-based simulation," Energy Policy, Elsevier, vol. 132(C), pages 132-155.
    16. Baltensperger, Tobias & Füchslin, Rudolf M. & Krütli, Pius & Lygeros, John, 2016. "Multiplicity of equilibria in conjectural variations models of natural gas markets," European Journal of Operational Research, Elsevier, vol. 252(2), pages 646-656.
    17. Zhuang, Jifang & Gabriel, Steven A., 2008. "A complementarity model for solving stochastic natural gas market equilibria," Energy Economics, Elsevier, vol. 30(1), pages 113-147, January.
    18. Vitor Miguel Ribeiro & Gustavo Soutinho & Isabel Soares, 2023. "Natural Gas Prices in the Framework of European Union’s Energy Transition: Assessing Evolution and Drivers," Energies, MDPI, vol. 16(4), pages 1-46, February.
    19. Zhang, Lingge & Yang, Dong & Wu, Shining & Luo, Meifeng, 2023. "Revisiting the pricing benchmarks for Asian LNG — An equilibrium analysis," Energy, Elsevier, vol. 262(PA).
    20. Mel T. Devine & Valentin Bertsch, 2023. "The role of demand response in mitigating market power: a quantitative analysis using a stochastic market equilibrium model," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(2), pages 555-597, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223019151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.