IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipas0360544221022076.html
   My bibliography  Save this article

Systematic identification and distribution analysis of olefins in FCC slurry oil

Author

Listed:
  • Jiao, Shouhui
  • Wang, Feng
  • Wang, Lili
  • Biney, Bernard Wiafe
  • Liu, He
  • Chen, Kun
  • Guo, Aijun
  • Sun, Lanyi
  • Wang, Zongxian

Abstract

In response to the chemical industry's eco-friendly and high-value-added requirements, FCC slurry oil (SO) has been used as a raw material for novel solid carbon materials. As one of the most important chemically active intermediates and products in the FCC process, olefins may have a significant impact on the quality of the carbon materials produced. However, the existence and distribution of olefins have not been discussed. In this paper, olefinic hydrocarbons were first innovatively identified as important compounds that do exist in SO, and their distributions in sub-fractions below 500 °C, classified with the types and carbon numbers, were analyzed. However, there are great limitations for the existing analytical methods in the distribution detection of olefins in the whole fractions of heavy oils. In order to solve this problem, a newly-developed analytical method has been developed. Two different separation techniques were implemented to separate SO into six sub-fractions and eight group compositions, according to boiling point and molecular polarity respectively, before the analysis of olefin distribution for higher accuracy. The proposed method has been further verified by the GC × GC-TOFMS method and proved to have superior reliability. The olefinic carbons in the fraction of 350–400 °C possess the highest content among the detected narrow fractions, up to 1.55%, which decreases gradually with the increase of boiling points, and the first three sub-fractions between 350–470 °C take most of the olefinic carbons in SO, reaching around 74%.

Suggested Citation

  • Jiao, Shouhui & Wang, Feng & Wang, Lili & Biney, Bernard Wiafe & Liu, He & Chen, Kun & Guo, Aijun & Sun, Lanyi & Wang, Zongxian, 2022. "Systematic identification and distribution analysis of olefins in FCC slurry oil," Energy, Elsevier, vol. 239(PA).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pa:s0360544221022076
    DOI: 10.1016/j.energy.2021.121959
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221022076
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121959?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Ki-Bum & Oh, Seung-Jin & Begum, Guzelciftci & Kim, Joo-Sik, 2018. "Production of clean oil with low levels of chlorine and olefins in a continuous two-stage pyrolysis of a mixture of waste low-density polyethylene and polyvinyl chloride," Energy, Elsevier, vol. 157(C), pages 402-411.
    2. Ren, Tao & Patel, Martin & Blok, Kornelis, 2006. "Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes," Energy, Elsevier, vol. 31(4), pages 425-451.
    3. Xu, Zhi-Xiang & Liu, Peng & Xu, Gui-Sheng & Liu, Qing & He, Zhi-Xia & Wang, Qian, 2017. "Bio-fuel oil characteristic from catalytic cracking of hydrogenated palm oil," Energy, Elsevier, vol. 133(C), pages 666-675.
    4. Chandran, Radhakrishnan & Kaliaperumal, Rajendran & Balakrishnan, Saravanakumar & Britten, Allen J. & MacInnis, Judy & Mkandawire, Martin, 2020. "Characteristics of bio-oil from continuous fast pyrolysis of Prosopis juliflora," Energy, Elsevier, vol. 190(C).
    5. Silva, Wellington Costa & Castro, Maria Priscila Pessanha & Perez, Victor Haber & Machado, Francisco A. & Mota, Leonardo & Sthel, Marcelo Silva, 2016. "Thermal degradation of ethanolic biodiesel: Physicochemical and thermal properties evaluation," Energy, Elsevier, vol. 114(C), pages 1093-1099.
    6. Ahmad, Imtiaz & Shakirullah, Mohammad & ur Rehman, Habib & Ishaq, Mohammad & Khan, Mohammad Arsala & Shah, Amjad Ali, 2009. "NMR analysis of cracking products of asphalt and assessment of catalyst performance," Energy, Elsevier, vol. 34(2), pages 127-133.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiao, Shouhui & Li, Zeliang & Qiu, Zhipeng & Biney, Bernard Wiafe & Wang, Feng & Liu, He & Chen, Kun & Guo, Aijun & Wang, Zongxian, 2023. "Effects of olefinic compounds on the thermal transformation for FCC slurry oil: Evolution pattern and mechanism," Energy, Elsevier, vol. 262(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Park, Ki-Bum & Choi, Min-Jun & Chae, Da-Yeong & Jung, Jaeheum & Kim, Joo-Sik, 2022. "Separate two-step and continuous two-stage pyrolysis of a waste plastic mixture to produce a chlorine-depleted oil," Energy, Elsevier, vol. 244(PA).
    2. Sai Chen & Ran Luo & Zhi-Jian Zhao & Chunlei Pei & Yiyi Xu & Zhenpu Lu & Chengjie Zhao & Hongbo Song & Jinlong Gong, 2023. "Concerted oxygen diffusion across heterogeneous oxide interfaces for intensified propane dehydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Fan, Liangliang & Liu, Lei & Xiao, Zhiguo & Su, Zheyang & Huang, Pei & Peng, Hongyu & Lv, Sen & Jiang, Haiwei & Ruan, Roger & Chen, Paul & Zhou, Wenguang, 2021. "Comparative study of continuous-stirred and batch microwave pyrolysis of linear low-density polyethylene in the presence/absence of HZSM-5," Energy, Elsevier, vol. 228(C).
    4. Schwob, Marcelo Rousseau Valença & Henriques Jr., Maurício & Szklo, Alexandre, 2009. "Technical potential for developing natural gas use in the Brazilian red ceramic industry," Applied Energy, Elsevier, vol. 86(9), pages 1524-1531, September.
    5. Haribal, Vasudev Pralhad & Neal, Luke M. & Li, Fanxing, 2017. "Oxidative dehydrogenation of ethane under a cyclic redox scheme – Process simulations and analysis," Energy, Elsevier, vol. 119(C), pages 1024-1035.
    6. Talaei, Alireza & Ahiduzzaman, Md. & Kumar, Amit, 2018. "Assessment of long-term energy efficiency improvement and greenhouse gas emissions mitigation potentials in the chemical sector," Energy, Elsevier, vol. 153(C), pages 231-247.
    7. Baghel, Paramjeet & Sakhiya, Anil Kumar & Kaushal, Priyanka, 2022. "Influence of temperature on slow pyrolysis of Prosopis Juliflora: An experimental and thermodynamic approach," Renewable Energy, Elsevier, vol. 185(C), pages 538-551.
    8. Kai Wang & Jianliang Zhang & Shengli Wu & Jianlong Wu & Kun Xu & Jiawen Liu & Xiaojun Ning & Guangwei Wang, 2022. "Feasibility Analysis of Biomass Hydrochar Blended Coal Injection for Blast Furnace," Sustainability, MDPI, vol. 14(17), pages 1-17, August.
    9. Subin Jung & Hyojin Jung & Yuchan Ahn, 2022. "Optimal Economic–Environmental Design of Heat Exchanger Network in Naphtha Cracking Center Considering Fuel Type and CO 2 Emissions," Energies, MDPI, vol. 15(24), pages 1-14, December.
    10. Xu, Zhi-Xiang & Song, Hao & Zhang, Shu & Tong, Si-Qi & He, Zhi-Xia & Wang, Qian & Li, Bin & Hu, Xun, 2019. "Co-hydrothermal carbonization of digested sewage sludge and cow dung biogas residue: Investigation of the reaction characteristics," Energy, Elsevier, vol. 187(C).
    11. Ziyad Sherif & Shoaib Sarfraz & Mark Jolly & Konstantinos Salonitis, 2023. "Greening Foundation Industries: Shared Processes and Sustainable Pathways," Sustainability, MDPI, vol. 15(19), pages 1-17, October.
    12. Ren, Tao & Daniëls, Bert & Patel, Martin K. & Blok, Kornelis, 2009. "Petrochemicals from oil, natural gas, coal and biomass: Production costs in 2030–2050," Resources, Conservation & Recycling, Elsevier, vol. 53(12), pages 653-663.
    13. Sharma, Ajit & Lee, Byeong-Kyu, 2017. "Energy savings and reduction of CO2 emission using Ca(OH)2 incorporated zeolite as an additive for warm and hot mix asphalt production," Energy, Elsevier, vol. 136(C), pages 142-150.
    14. Layritz, Lucia S. & Dolganova, Iulia & Finkbeiner, Matthias & Luderer, Gunnar & Penteado, Alberto T. & Ueckerdt, Falko & Repke, Jens-Uwe, 2021. "The potential of direct steam cracker electrification and carbon capture & utilization via oxidative coupling of methane as decarbonization strategies for ethylene production," Applied Energy, Elsevier, vol. 296(C).
    15. Masih, Mansur & Algahtani, Ibrahim & De Mello, Lurion, 2010. "Price dynamics of crude oil and the regional ethylene markets," Energy Economics, Elsevier, vol. 32(6), pages 1435-1444, November.
    16. Kapsalyamova, Zhanna & Paltsev, Sergey, 2020. "Use of natural gas and oil as a source of feedstocks," Energy Economics, Elsevier, vol. 92(C).
    17. Park, Ki-Bum & Jeong, Yong-Seong & Kim, Joo-Sik, 2019. "Activator-assisted pyrolysis of polypropylene," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    18. Zahra Gholami & Fatemeh Gholami & Zdeněk Tišler & Martin Tomas & Mohammadtaghi Vakili, 2021. "A Review on Production of Light Olefins via Fluid Catalytic Cracking," Energies, MDPI, vol. 14(4), pages 1-36, February.
    19. Zhu, Qun-Xiong & Zhang, Chen & He, Yan-Lin & Xu, Yuan, 2018. "Energy modeling and saving potential analysis using a novel extreme learning fuzzy logic network: A case study of ethylene industry," Applied Energy, Elsevier, vol. 213(C), pages 322-333.
    20. Dobroschke, Stephan, 2012. "Energieeffizienzpotenziale und staatlicher Lenkungsbedarf," FiFo Discussion Papers - Finanzwissenschaftliche Diskussionsbeiträge 12-1, University of Cologne, FiFo Institute for Public Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pa:s0360544221022076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.