IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v136y2019icp828-836.html

Catalytic conversion of glycerol to olefins over Fe, Mo, and Nb catalysts supported on zeolite ZSM-5

Author

Listed:
  • Lima, Dirleia S.
  • Perez-Lopez, Oscar W.

Abstract

The large scale production of biodiesel has increased interest in glycerol transformation into higher value products. This study evaluated catalysts supported on HZSM-5 containing Fe, Mo, and Nb, in the glycerol conversion to olefins. The samples were prepared by wet impregnation and characterized by XRD, SBET, NH3-TPD, and TPO techniques. Catalytic experiments were performed in the range of 450–600 °C in a fixed-bed tubular reactor. The gaseous products were analyzed by online gas chromatography. It was observed that the modification in the acidic properties of ZSM-5 plays an important role in the selectivity to olefins. The highest selectivity for olefins was obtained for the Fe/ZSM-5 catalyst in the 450–500 °C range and for Nb/ZSM-5 in the range of 550–600 °C. Fe/ZSM-5 presented the highest selectivity to propylene at lower temperatures due to the higher acidic strength of the strong acid sites.

Suggested Citation

  • Lima, Dirleia S. & Perez-Lopez, Oscar W., 2019. "Catalytic conversion of glycerol to olefins over Fe, Mo, and Nb catalysts supported on zeolite ZSM-5," Renewable Energy, Elsevier, vol. 136(C), pages 828-836.
  • Handle: RePEc:eee:renene:v:136:y:2019:i:c:p:828-836
    DOI: 10.1016/j.renene.2019.01.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119300515
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.01.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ren, Tao & Patel, Martin & Blok, Kornelis, 2006. "Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes," Energy, Elsevier, vol. 31(4), pages 425-451.
    2. Vichaphund, Supawan & Aht-ong, Duangdao & Sricharoenchaikul, Viboon & Atong, Duangduen, 2015. "Production of aromatic compounds from catalytic fast pyrolysis of Jatropha residues using metal/HZSM-5 prepared by ion-exchange and impregnation methods," Renewable Energy, Elsevier, vol. 79(C), pages 28-37.
    3. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Hezaveh, Hadi, 2014. "Glycerol for renewable acrolein production by catalytic dehydration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 28-59.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charalampos Michalakakis & Jonathan M. Cullen, 2022. "Dynamic exergy analysis: From industrial data to exergy flows," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 12-26, February.
    2. Ramalingam, Senthil & Ezhumalai, Manikandan & Govindasamy, Mohan, 2019. "Syngas: Derived from biodiesel and its influence on CI engine," Energy, Elsevier, vol. 189(C).
    3. Jiao, Shouhui & Wang, Feng & Wang, Lili & Biney, Bernard Wiafe & Liu, He & Chen, Kun & Guo, Aijun & Sun, Lanyi & Wang, Zongxian, 2022. "Systematic identification and distribution analysis of olefins in FCC slurry oil," Energy, Elsevier, vol. 239(PA).
    4. Jalid, Fatima & Khan, Tuhin Suvra & Haider, M. Ali, 2021. "Exploring bimetallic alloy catalysts of Co, Pd and Cu for CO2 reduction combined with ethane dehydrogenation," Applied Energy, Elsevier, vol. 299(C).
    5. Park, Ki-Bum & Jeong, Yong-Seong & Guzelciftci, Begum & Kim, Joo-Sik, 2019. "Characteristics of a new type continuous two-stage pyrolysis of waste polyethylene," Energy, Elsevier, vol. 166(C), pages 343-351.
    6. Sofia Russo & Alicia Valero & Antonio Valero & Marta Iglesias-Émbil, 2021. "Exergy-Based Assessment of Polymers Production and Recycling: An Application to the Automotive Sector," Energies, MDPI, vol. 14(2), pages 1-19, January.
    7. Eleni F. Iliopoulou & Kostas S. Triantafyllidis & Angelos A. Lappas, 2019. "Overview of catalytic upgrading of biomass pyrolysis vapors toward the production of fuels and high‐value chemicals," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(1), January.
    8. Raoul Voss & Roh Pin Lee & Magnus Fröhling, 2023. "A consequential approach to life cycle sustainability assessment with an agent‐based model to determine the potential contribution of chemical recycling to UN Sustainable Development Goals," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 726-745, June.
    9. Liang, Jie & Shan, Guangcun & Sun, Yifei, 2021. "Catalytic fast pyrolysis of lignocellulosic biomass: Critical role of zeolite catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    10. Broeren, M.L.M. & Saygin, D. & Patel, M.K., 2014. "Forecasting global developments in the basic chemical industry for environmental policy analysis," Energy Policy, Elsevier, vol. 64(C), pages 273-287.
    11. Sardarmehni, Mojtaba & Tahouni, Nassim & Panjeshahi, M. Hassan, 2017. "Benchmarking of olefin plant cold-end for shaft work consumption, using process integration concepts," Energy, Elsevier, vol. 127(C), pages 623-633.
    12. Ren, Tao & Patel, Martin K. & Blok, Kornelis, 2008. "Steam cracking and methane to olefins: Energy use, CO2 emissions and production costs," Energy, Elsevier, vol. 33(5), pages 817-833.
    13. Stefan Lechtenböhmer & Clemens Schneider & María Yetano Roche & Samuel Höller, 2015. "Re-Industrialisation and Low-Carbon Economy—Can They Go Together? Results from Stakeholder-Based Scenarios for Energy-Intensive Industries in the German State of North Rhine Westphalia," Energies, MDPI, vol. 8(10), pages 1-26, October.
    14. Raoul Voss & Roh Pin Lee & Magnus Fröhling, 2022. "Chemical Recycling of Plastic Waste: Comparative Evaluation of Environmental and Economic Performances of Gasification- and Incineration-based Treatment for Lightweight Packaging Waste," Circular Economy and Sustainability, Springer, vol. 2(4), pages 1369-1398, December.
    15. Sai Chen & Ran Luo & Zhi-Jian Zhao & Chunlei Pei & Yiyi Xu & Zhenpu Lu & Chengjie Zhao & Hongbo Song & Jinlong Gong, 2023. "Concerted oxygen diffusion across heterogeneous oxide interfaces for intensified propane dehydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Schwob, Marcelo Rousseau Valença & Henriques Jr., Maurício & Szklo, Alexandre, 2009. "Technical potential for developing natural gas use in the Brazilian red ceramic industry," Applied Energy, Elsevier, vol. 86(9), pages 1524-1531, September.
    17. Haribal, Vasudev Pralhad & Neal, Luke M. & Li, Fanxing, 2017. "Oxidative dehydrogenation of ethane under a cyclic redox scheme – Process simulations and analysis," Energy, Elsevier, vol. 119(C), pages 1024-1035.
    18. Xia, Wei & Wang, Xue & Li, Shuangshuang & Jiang, Zhenhua & Chen, Kun & Liu, Dong, 2024. "Multiple synergistic roles of Zr modification on ZSM-5 in performant and stable catalyst for ethanol conversion to propene," Energy, Elsevier, vol. 288(C).
    19. Talaei, Alireza & Ahiduzzaman, Md. & Kumar, Amit, 2018. "Assessment of long-term energy efficiency improvement and greenhouse gas emissions mitigation potentials in the chemical sector," Energy, Elsevier, vol. 153(C), pages 231-247.
    20. Borba, Bruno S.M.C. & Lucena, André F.P. & Rathmann, Régis & Costa, Isabella V.L. & Nogueira, Larissa P.P. & Rochedo, Pedro R.R. & Castelo Branco, David A. & Júnior, Mauricio F.H. & Szklo, Alexandre &, 2012. "Energy-related climate change mitigation in Brazil: Potential, abatement costs and associated policies," Energy Policy, Elsevier, vol. 49(C), pages 430-441.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:136:y:2019:i:c:p:828-836. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.