IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v53y2009i12p653-663.html
   My bibliography  Save this article

Petrochemicals from oil, natural gas, coal and biomass: Production costs in 2030–2050

Author

Listed:
  • Ren, Tao
  • Daniëls, Bert
  • Patel, Martin K.
  • Blok, Kornelis

Abstract

Methane, coal and biomass are being considered as alternatives to crude oil for the production of basic petrochemicals, such as light olefins. This paper is a study on the production costs of 24 process routes utilizing these primary energy sources. A wide range of projected energy prices in 2030–2050 found in the open literature is used. The basis for comparison is the production cost per t of high value chemicals (HVCs or light olefin-value equivalent). A Monte Carlo method was used to estimate the ranking of production costs of all 24 routes with 10,000 trials of varying energy prices and CO2 emissions costs (assumed to be within $0–100/tCO2; the total CO2 emissions, or cradle-to-grave CO2 emissions, were considered). High energy prices in the first three quarter of 2008 were tested separately. The main findings are:•Production costs: while the production costs of crude oil- and natural gas-based routes are within $500–900/tHVCs, those of coal- and biomass-based routes are mostly within $400–800/tHVCs. Production costs of coal- and biomass-based routes are in general quite similar while in some cases the difference is significant. Among the top seven most expensive routes, six are oil- and gas-based routes. Among the top seven least expensive routes, six are coal and biomass routes.•CO2emissions costs: the effect of CO2 emissions costs was found to be strong on the coal-based routes and also quite significant on the biomass-based routes. However, the effect on oil- and gas-based routes is found to be small or relatively moderate.•Energy prices in 2008: most of the coal-based routes and biomass-based routes (particularly sugar cane) still have much lower production costs than the oil- and gas-based routes (even if international freight costs are included).

Suggested Citation

  • Ren, Tao & Daniëls, Bert & Patel, Martin K. & Blok, Kornelis, 2009. "Petrochemicals from oil, natural gas, coal and biomass: Production costs in 2030–2050," Resources, Conservation & Recycling, Elsevier, vol. 53(12), pages 653-663.
  • Handle: RePEc:eee:recore:v:53:y:2009:i:12:p:653-663
    DOI: 10.1016/j.resconrec.2009.04.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344909000780
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2009.04.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gielen, D. J. & Yagita, H., 2002. "The long-term impact of GHG reduction policies on global trade: A case study for the petrochemical industry," European Journal of Operational Research, Elsevier, vol. 139(3), pages 665-681, June.
    2. Ren, Tao & Patel, Martin & Blok, Kornelis, 2006. "Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes," Energy, Elsevier, vol. 31(4), pages 425-451.
    3. Ren, Tao & Patel, Martin K., 2009. "Basic petrochemicals from natural gas, coal and biomass: Energy use and CO2 emissions," Resources, Conservation & Recycling, Elsevier, vol. 53(9), pages 513-528.
    4. Ren, Tao & Patel, Martin K. & Blok, Kornelis, 2008. "Steam cracking and methane to olefins: Energy use, CO2 emissions and production costs," Energy, Elsevier, vol. 33(5), pages 817-833.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Tao & Patel, Martin K., 2009. "Basic petrochemicals from natural gas, coal and biomass: Energy use and CO2 emissions," Resources, Conservation & Recycling, Elsevier, vol. 53(9), pages 513-528.
    2. Talaei, Alireza & Ahiduzzaman, Md. & Kumar, Amit, 2018. "Assessment of long-term energy efficiency improvement and greenhouse gas emissions mitigation potentials in the chemical sector," Energy, Elsevier, vol. 153(C), pages 231-247.
    3. Xu, Zhongming & Fang, Chenhao & Ma, Tieju, 2020. "Analysis of China’s olefin industry using a system optimization model considering technological learning and energy consumption reduction," Energy, Elsevier, vol. 191(C).
    4. Jalid, Fatima & Khan, Tuhin Suvra & Haider, M. Ali, 2021. "Exploring bimetallic alloy catalysts of Co, Pd and Cu for CO2 reduction combined with ethane dehydrogenation," Applied Energy, Elsevier, vol. 299(C).
    5. Zahra Gholami & Fatemeh Gholami & Zdeněk Tišler & Mohammadtaghi Vakili, 2021. "A Review on the Production of Light Olefins Using Steam Cracking of Hydrocarbons," Energies, MDPI, vol. 14(23), pages 1-24, December.
    6. Rahimpour, M.R. & Mirvakili, A. & Paymooni, K., 2011. "A novel water perm-selective membrane dual-type reactor concept for Fischer–Tropsch synthesis of GTL (gas to liquid) technology," Energy, Elsevier, vol. 36(2), pages 1223-1235.
    7. Jiao, Shouhui & Wang, Feng & Wang, Lili & Biney, Bernard Wiafe & Liu, He & Chen, Kun & Guo, Aijun & Sun, Lanyi & Wang, Zongxian, 2022. "Systematic identification and distribution analysis of olefins in FCC slurry oil," Energy, Elsevier, vol. 239(PA).
    8. Yaser Khojasteh Salkuyeh & Thomas A. Adams II, 2015. "Co-Production of Olefins, Fuels, and Electricity from Conventional Pipeline Gas and Shale Gas with Near-Zero CO 2 Emissions. Part I: Process Development and Technical Performance," Energies, MDPI, vol. 8(5), pages 1-23, April.
    9. Gomes, Gabriel Lourenço & Szklo, Alexandre & Schaeffer, Roberto, 2009. "The impact of CO2 taxation on the configuration of new refineries: An application to Brazil," Energy Policy, Elsevier, vol. 37(12), pages 5519-5529, December.
    10. Sai Chen & Ran Luo & Zhi-Jian Zhao & Chunlei Pei & Yiyi Xu & Zhenpu Lu & Chengjie Zhao & Hongbo Song & Jinlong Gong, 2023. "Concerted oxygen diffusion across heterogeneous oxide interfaces for intensified propane dehydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Schwob, Marcelo Rousseau Valença & Henriques Jr., Maurício & Szklo, Alexandre, 2009. "Technical potential for developing natural gas use in the Brazilian red ceramic industry," Applied Energy, Elsevier, vol. 86(9), pages 1524-1531, September.
    12. Haribal, Vasudev Pralhad & Neal, Luke M. & Li, Fanxing, 2017. "Oxidative dehydrogenation of ethane under a cyclic redox scheme – Process simulations and analysis," Energy, Elsevier, vol. 119(C), pages 1024-1035.
    13. Rahmad Syah & Afshin Davarpanah & Marischa Elveny & Amir Ghasemi & Dadan Ramdan, 2021. "The Economic Evaluation of Methanol and Propylene Production from Natural Gas at Petrochemical Industries in Iran," Sustainability, MDPI, vol. 13(17), pages 1-23, September.
    14. Subin Jung & Hyojin Jung & Yuchan Ahn, 2022. "Optimal Economic–Environmental Design of Heat Exchanger Network in Naphtha Cracking Center Considering Fuel Type and CO 2 Emissions," Energies, MDPI, vol. 15(24), pages 1-14, December.
    15. Ziyad Sherif & Shoaib Sarfraz & Mark Jolly & Konstantinos Salonitis, 2023. "Greening Foundation Industries: Shared Processes and Sustainable Pathways," Sustainability, MDPI, vol. 15(19), pages 1-17, October.
    16. Gielen, Dolf & Taylor, Michael, 2007. "Modelling industrial energy use: The IEAs Energy Technology Perspectives," Energy Economics, Elsevier, vol. 29(4), pages 889-912, July.
    17. Xu, Chaoqi & Konnov, Alexander A., 2012. "Validation and analysis of detailed kinetic models for ethylene combustion," Energy, Elsevier, vol. 43(1), pages 19-29.
    18. Layritz, Lucia S. & Dolganova, Iulia & Finkbeiner, Matthias & Luderer, Gunnar & Penteado, Alberto T. & Ueckerdt, Falko & Repke, Jens-Uwe, 2021. "The potential of direct steam cracker electrification and carbon capture & utilization via oxidative coupling of methane as decarbonization strategies for ethylene production," Applied Energy, Elsevier, vol. 296(C).
    19. Masih, Mansur & Algahtani, Ibrahim & De Mello, Lurion, 2010. "Price dynamics of crude oil and the regional ethylene markets," Energy Economics, Elsevier, vol. 32(6), pages 1435-1444, November.
    20. Kapsalyamova, Zhanna & Paltsev, Sergey, 2020. "Use of natural gas and oil as a source of feedstocks," Energy Economics, Elsevier, vol. 92(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:53:y:2009:i:12:p:653-663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.