IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v381y2025ics0306261924025571.html
   My bibliography  Save this article

Industrial sector pathways to a well-below 2 °C world: A global integrated assessment perspective

Author

Listed:
  • Zanon-Zotin, Marianne
  • Baptista, Luiz Bernardo
  • Rochedo, Pedro R.R.
  • Szklo, Alexandre
  • Schaeffer, Roberto

Abstract

The heavy industry is often regarded as hard-to-abate due to its importance to infrastructure build-up and capital stock, its reliance on high-temperature heat requirements, and the critical role it plays in global supply chains and security. These complexities have often been invoked to justify the persistence of residual greenhouse gas (GHG) emissions from cement, steel, and chemicals production by the year of net-zero, which, in contrast, suggest the need for global-scale roll-out of carbon dioxide removal (CDR) technologies. In this study, we use the global integrated assessment model (IAM) COFFEE with a detailed representation of industrial processes to understand the role of the industrial sector in climate change mitigation scenarios with different temperature ambitions. Our findings reveal a nuanced picture. While the industrial sector presents residual emissions of 1300–7600 MtCO2yr−1 in well-below 2 °C scenarios by 2050, it also emerges as a key mitigation asset in specific subsectors (e.g. chemicals and steel) and regions (e.g. AUS, BRA, CAN CAM, SAM), depending on the level of climate ambition pursued and the availability of biomass and carbon capture scale-up. Thus, the sector's role in climate change mitigation is context-dependent, opening pathways for strategic planning and technological and regional targeted actions.

Suggested Citation

  • Zanon-Zotin, Marianne & Baptista, Luiz Bernardo & Rochedo, Pedro R.R. & Szklo, Alexandre & Schaeffer, Roberto, 2025. "Industrial sector pathways to a well-below 2 °C world: A global integrated assessment perspective," Applied Energy, Elsevier, vol. 381(C).
  • Handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924025571
    DOI: 10.1016/j.apenergy.2024.125173
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924025571
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125173?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexander Otto & Martin Robinius & Thomas Grube & Sebastian Schiebahn & Aaron Praktiknjo & Detlef Stolten, 2017. "Power-to-Steel: Reducing CO 2 through the Integration of Renewable Energy and Hydrogen into the German Steel Industry," Energies, MDPI, vol. 10(4), pages 1-21, April.
    2. Christopher G. F. Bataille, 2020. "Physical and policy pathways to net‐zero emissions industry," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    3. Lerede, D. & Bustreo, C. & Gracceva, F. & Saccone, M. & Savoldi, L., 2021. "Techno-economic and environmental characterization of industrial technologies for transparent bottom-up energy modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    4. Xu, Zhongming & Zhang, Yaru & Fang, Chenhao & Yu, Yadong & Ma, Tieju, 2019. "Analysis of China's olefin industry with a system optimization model – With different scenarios of dynamic oil and coal prices," Energy Policy, Elsevier, vol. 135(C).
    5. Ren, Tao & Patel, Martin & Blok, Kornelis, 2006. "Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes," Energy, Elsevier, vol. 31(4), pages 425-451.
    6. Mark Roelfsema & Heleen L. Soest & Mathijs Harmsen & Detlef P. Vuuren & Christoph Bertram & Michel Elzen & Niklas Höhne & Gabriela Iacobuta & Volker Krey & Elmar Kriegler & Gunnar Luderer & Keywan Ria, 2020. "Taking stock of national climate policies to evaluate implementation of the Paris Agreement," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    7. Kusuma, Ravi Teja & Hiremath, Rahul B. & Rajesh, Pachimatla & Kumar, Bimlesh & Renukappa, Suresh, 2022. "Sustainable transition towards biomass-based cement industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    8. Frédéric Lantz & Valérie Saint-Antonin & Jean-François Gruson & Wojciech Suwala, 2012. "The OURSE model: Simulating the World Refining Sector to 2030," JRC Research Reports JRC68853, Joint Research Centre.
    9. Ren, Tao & Patel, Martin K., 2009. "Basic petrochemicals from natural gas, coal and biomass: Energy use and CO2 emissions," Resources, Conservation & Recycling, Elsevier, vol. 53(9), pages 513-528.
    10. van Ruijven, Bas J. & van Vuuren, Detlef P. & Boskaljon, Willem & Neelis, Maarten L. & Saygin, Deger & Patel, Martin K., 2016. "Long-term model-based projections of energy use and CO2 emissions from the global steel and cement industries," Resources, Conservation & Recycling, Elsevier, vol. 112(C), pages 15-36.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lopez, Gabriel & Galimova, Tansu & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2023. "Towards defossilised steel: Supply chain options for a green European steel industry," Energy, Elsevier, vol. 273(C).
    2. Ren, Tao & Daniëls, Bert & Patel, Martin K. & Blok, Kornelis, 2009. "Petrochemicals from oil, natural gas, coal and biomass: Production costs in 2030–2050," Resources, Conservation & Recycling, Elsevier, vol. 53(12), pages 653-663.
    3. Ida Karlsson & Johan Rootzén & Alla Toktarova & Mikael Odenberger & Filip Johnsson & Lisa Göransson, 2020. "Roadmap for Decarbonization of the Building and Construction Industry—A Supply Chain Analysis Including Primary Production of Steel and Cement," Energies, MDPI, vol. 13(16), pages 1-40, August.
    4. Zahra Gholami & Fatemeh Gholami & Zdeněk Tišler & Mohammadtaghi Vakili, 2021. "A Review on the Production of Light Olefins Using Steam Cracking of Hydrocarbons," Energies, MDPI, vol. 14(23), pages 1-24, December.
    5. Tobias Hübner, 2020. "Small-Scale Modelling of Individual Greenhouse Gas Abatement Measures in Industry," Energies, MDPI, vol. 13(7), pages 1-43, April.
    6. Jiao, Shouhui & Wang, Feng & Wang, Lili & Biney, Bernard Wiafe & Liu, He & Chen, Kun & Guo, Aijun & Sun, Lanyi & Wang, Zongxian, 2022. "Systematic identification and distribution analysis of olefins in FCC slurry oil," Energy, Elsevier, vol. 239(PA).
    7. Qiang Wang & Yuanfan Li & Rongrong Li, 2024. "Rethinking the environmental Kuznets curve hypothesis across 214 countries: the impacts of 12 economic, institutional, technological, resource, and social factors," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-19, December.
    8. Salman, Muhammad & Long, Xingle & Wang, Guimei & Zha, Donglan, 2022. "Paris climate agreement and global environmental efficiency: New evidence from fuzzy regression discontinuity design," Energy Policy, Elsevier, vol. 168(C).
    9. Mikovits, Christian & Wetterlund, Elisabeth & Wehrle, Sebastian & Baumgartner, Johann & Schmidt, Johannes, 2021. "Stronger together: Multi-annual variability of hydrogen production supported by wind power in Sweden," Applied Energy, Elsevier, vol. 282(PB).
    10. Christoph Sejkora & Johannes Lindorfer & Lisa Kühberger & Thomas Kienberger, 2021. "Interlinking the Renewable Electricity and Gas Sectors: A Techno-Economic Case Study for Austria," Energies, MDPI, vol. 14(19), pages 1-38, October.
    11. Li, Wei & Sun, Wen & Li, Guomin & Cui, Pengfei & Wu, Wen & Jin, Baihui, 2017. "Temporal and spatial heterogeneity of carbon intensity in China's construction industry," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 162-173.
    12. Langer, Lissy & Huppmann, Daniel & Holz, Franziska, 2016. "Lifting the US crude oil export ban: A numerical partial equilibrium analysis," Energy Policy, Elsevier, vol. 97(C), pages 258-266.
    13. Kimon Keramidas & Silvana Mima & Adrien Bidaud, 2024. "Opportunities and roadblocks in the decarbonisation of the global steel sector: A demand and production modelling approach," Post-Print hal-04383385, HAL.
    14. Shao, Tianming & Pan, Xunzhang & Li, Xiang & Zhou, Sheng & Zhang, Shu & Chen, Wenying, 2022. "China's industrial decarbonization in the context of carbon neutrality: A sub-sectoral analysis based on integrated modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    15. Schwob, Marcelo Rousseau Valença & Henriques Jr., Maurício & Szklo, Alexandre, 2009. "Technical potential for developing natural gas use in the Brazilian red ceramic industry," Applied Energy, Elsevier, vol. 86(9), pages 1524-1531, September.
    16. Haribal, Vasudev Pralhad & Neal, Luke M. & Li, Fanxing, 2017. "Oxidative dehydrogenation of ethane under a cyclic redox scheme – Process simulations and analysis," Energy, Elsevier, vol. 119(C), pages 1024-1035.
    17. Alessandro Del Ponte & Aidas Masiliūnas & Noah Lim, 2023. "Information about historical emissions drives the division of climate change mitigation costs," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    18. Dong, Weiwei & Niu, XiaoQin & Nassani, Abdelmohsen A. & Naseem, Imran & Zaman, Khalid, 2024. "E-commerce mineral resource footprints: Investigating drivers for sustainable mining development," Resources Policy, Elsevier, vol. 89(C).
    19. Perdana, Sigit & Vielle, Marc, 2022. "Making the EU Carbon Border Adjustment Mechanism acceptable and climate friendly for least developed countries," Energy Policy, Elsevier, vol. 170(C).
    20. Subin Jung & Hyojin Jung & Yuchan Ahn, 2022. "Optimal Economic–Environmental Design of Heat Exchanger Network in Naphtha Cracking Center Considering Fuel Type and CO 2 Emissions," Energies, MDPI, vol. 15(24), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924025571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.