IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v232y2021ics0360544221012755.html
   My bibliography  Save this article

Potential of drop-in biofuel production from camel manure by hydrothermal liquefaction and biocrude upgrading: A Qatar case study

Author

Listed:
  • Alherbawi, Mohammad
  • Parthasarathy, Prakash
  • Al-Ansari, Tareq
  • Mackey, Hamish R.
  • McKay, Gordon

Abstract

Livestock manures significantly contribute to greenhouse gas emissions and soil contamination if not valorised or disposed of properly. Meanwhile, hydrothermal liquefaction has emerged as a promising technology for the conversion of wet wastes into value-added products. As such, this study investigates the potential of hydrothermal liquefaction of camel manure and subsequent upgrading into drop-in fuels in Qatar. Experimental characterisation of manure samples is conducted, while a small-scale plant is simulated and evaluated using Aspen Plus®. Excess treated wastewater of Qatar is utilised as an alternative to fresh water in the process, while power is completely generated on-site. The demonstrated results are promising; whereby, a biocrude yield of 37.9% (on dry and ash-free basis) is achieved, while the biocrude is upgraded into a high-quality bio-gasoline. The produced bio-gasoline contributes to a 7% reduction in greenhouse gas emissions relative to conventional gasoline. The project capital investment is estimated to be 38 M$, while the bio-gasoline's minimum selling price is at 0.87 $/kg, which is still above the market price of conventional gasoline in Qatar (∼0.6 $/kg). However, the conducted sensitivity analysis indicates that scaling-up the plant by 5-fold can shift the fuel's minimum selling price below the average market price. As such, it has a high potential to be locally commercialised especially at times of petroleum price hikes.

Suggested Citation

  • Alherbawi, Mohammad & Parthasarathy, Prakash & Al-Ansari, Tareq & Mackey, Hamish R. & McKay, Gordon, 2021. "Potential of drop-in biofuel production from camel manure by hydrothermal liquefaction and biocrude upgrading: A Qatar case study," Energy, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:energy:v:232:y:2021:i:c:s0360544221012755
    DOI: 10.1016/j.energy.2021.121027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221012755
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Prestigiacomo, Claudia & Laudicina, Vito Armando & Siragusa, Angelo & Scialdone, Onofrio & Galia, Alessandro, 2020. "Hydrothermal liquefaction of waste biomass in stirred reactors: One step forward to the integral valorization of municipal sludge," Energy, Elsevier, vol. 201(C).
    2. Tzanetis, Konstantinos F. & Posada, John A. & Ramirez, Andrea, 2017. "Analysis of biomass hydrothermal liquefaction and biocrude-oil upgrading for renewable jet fuel production: The impact of reaction conditions on production costs and GHG emissions performance," Renewable Energy, Elsevier, vol. 113(C), pages 1388-1398.
    3. Chen, Wei-Hsin & Lin, Yu-Ying & Liu, Hsuan-Cheng & Baroutian, Saeid, 2020. "Optimization of food waste hydrothermal liquefaction by a two-step process in association with a double analysis," Energy, Elsevier, vol. 199(C).
    4. Tianduo Peng & Sheng Zhou & Zhiyi Yuan & Xunmin Ou, 2017. "Life Cycle Greenhouse Gas Analysis of Multiple Vehicle Fuel Pathways in China," Sustainability, MDPI, vol. 9(12), pages 1-24, November.
    5. Jerome A. Ramirez & Richard J. Brown & Thomas J. Rainey, 2015. "A Review of Hydrothermal Liquefaction Bio-Crude Properties and Prospects for Upgrading to Transportation Fuels," Energies, MDPI, vol. 8(7), pages 1-30, July.
    6. Chen, Wei-Hsin & Lin, Yu-Ying & Liu, Hsuah-Cheng & Chen, Teng-Chien & Hung, Chun-Hung & Chen, Chi-Hui & Ong, Hwai Chyuan, 2019. "A comprehensive analysis of food waste derived liquefaction bio-oil properties for industrial application," Applied Energy, Elsevier, vol. 237(C), pages 283-291.
    7. Junying Chen & Lijun Wang & Bo Zhang & Rui Li & Abolghasem Shahbazi, 2018. "Hydrothermal Liquefaction Enhanced by Various Chemicals as a Means of Sustainable Dairy Manure Treatment," Sustainability, MDPI, vol. 10(1), pages 1-14, January.
    8. Daya Shankar Pandey & Giannis Katsaros & Christian Lindfors & James J. Leahy & Savvas A. Tassou, 2019. "Fast Pyrolysis of Poultry Litter in a Bubbling Fluidised Bed Reactor: Energy and Nutrient Recovery," Sustainability, MDPI, vol. 11(9), pages 1-17, May.
    9. Zhu, Yunhua & Biddy, Mary J. & Jones, Susanne B. & Elliott, Douglas C. & Schmidt, Andrew J., 2014. "Techno-economic analysis of liquid fuel production from woody biomass via hydrothermal liquefaction (HTL) and upgrading," Applied Energy, Elsevier, vol. 129(C), pages 384-394.
    10. Zuhal Akyürek, 2019. "Sustainable Valorization of Animal Manure and Recycled Polyester: Co-pyrolysis Synergy," Sustainability, MDPI, vol. 11(8), pages 1-14, April.
    11. Alherbawi, Mohammad & AlNouss, Ahmed & McKay, Gordon & Al-Ansari, Tareq, 2021. "Optimum sustainable utilisation of the whole fruit of Jatropha curcas: An energy, water and food nexus approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    12. Alherbawi, Mohammad & McKay, Gordon & Mackey, Hamish R. & Al-Ansari, Tareq, 2021. "Jatropha curcas for jet biofuel production: Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Watson, Jamison & Lu, Jianwen & de Souza, Raquel & Si, Buchun & Zhang, Yuanhui & Liu, Zhidan, 2019. "Effects of the extraction solvents in hydrothermal liquefaction processes: Biocrude oil quality and energy conversion efficiency," Energy, Elsevier, vol. 167(C), pages 189-197.
    14. Nie, Yuhao & Bi, Xiaotao T., 2018. "Techno-economic assessment of transportation biofuels from hydrothermal liquefaction of forest residues in British Columbia," Energy, Elsevier, vol. 153(C), pages 464-475.
    15. Feng, Shanghuan & Wei, Rufei & Leitch, Mathew & Xu, Chunbao Charles, 2018. "Comparative study on lignocellulose liquefaction in water, ethanol, and water/ethanol mixture: Roles of ethanol and water," Energy, Elsevier, vol. 155(C), pages 234-241.
    16. Magdeldin, Mohamed & Kohl, Thomas & Järvinen, Mika, 2017. "Techno-economic assessment of the by-products contribution from non-catalytic hydrothermal liquefaction of lignocellulose residues," Energy, Elsevier, vol. 137(C), pages 679-695.
    17. Xu, Donghai & Lin, Guike & Liu, Liang & Wang, Yang & Jing, Zefeng & Wang, Shuzhong, 2018. "Comprehensive evaluation on product characteristics of fast hydrothermal liquefaction of sewage sludge at different temperatures," Energy, Elsevier, vol. 159(C), pages 686-695.
    18. Yuan, Chuan & Wang, Shuang & Cao, Bin & Hu, Yamin & Abomohra, Abd El-Fatah & Wang, Qian & Qian, Lili & Liu, Lu & Liu, Xinlin & He, Zhixia & Sun, Chaoqun & Feng, Yongqiang & Zhang, Bo, 2019. "Optimization of hydrothermal co-liquefaction of seaweeds with lignocellulosic biomass: Merging 2nd and 3rd generation feedstocks for enhanced bio-oil production," Energy, Elsevier, vol. 173(C), pages 413-422.
    19. Zhang, Bo & Chen, Jixiang & Kandasamy, Sabariswaran & He, Zhixia, 2020. "Hydrothermal liquefaction of fresh lemon-peel and Spirulina platensis blending -operation parameter and biocrude chemistry investigation," Energy, Elsevier, vol. 193(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samar Elkhalifa & Sabah Mariyam & Hamish R. Mackey & Tareq Al-Ansari & Gordon McKay & Prakash Parthasarathy, 2022. "Pyrolysis Valorization of Vegetable Wastes: Thermal, Kinetic, Thermodynamics, and Pyrogas Analyses," Energies, MDPI, vol. 15(17), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ong, Benjamin H.Y. & Walmsley, Timothy G. & Atkins, Martin J. & Varbanov, Petar S. & Walmsley, Michael R.W., 2019. "A heat- and mass-integrated design of hydrothermal liquefaction process co-located with a Kraft pulp mill," Energy, Elsevier, vol. 189(C).
    2. Ankit Mathanker & Snehlata Das & Deepak Pudasainee & Monir Khan & Amit Kumar & Rajender Gupta, 2021. "A Review of Hydrothermal Liquefaction of Biomass for Biofuels Production with a Special Focus on the Effect of Process Parameters, Co-Solvents, and Extraction Solvents," Energies, MDPI, vol. 14(16), pages 1-60, August.
    3. Ratha, Sachitra Kumar & Renuka, Nirmal & Abunama, Taher & Rawat, Ismail & Bux, Faizal, 2022. "Hydrothermal liquefaction of algal feedstocks: The effect of biomass characteristics and extraction solvents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    4. Raquel de Souza Deuber & Jéssica Marcon Bressanin & Daniel Santos Fernandes & Henrique Real Guimarães & Mateus Ferreira Chagas & Antonio Bonomi & Leonardo Vasconcelos Fregolente & Marcos Djun Barbosa , 2023. "Production of Sustainable Aviation Fuels from Lignocellulosic Residues in Brazil through Hydrothermal Liquefaction: Techno-Economic and Environmental Assessments," Energies, MDPI, vol. 16(6), pages 1-21, March.
    5. Michał Wojcieszyk & Lotta Knuutila & Yuri Kroyan & Mário de Pinto Balsemão & Rupali Tripathi & Juha Keskivali & Anna Karvo & Annukka Santasalo-Aarnio & Otto Blomstedt & Martti Larmi, 2021. "Performance of Anisole and Isobutanol as Gasoline Bio-Blendstocks for Spark Ignition Engines," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    6. Douwe F. A. van der Kroft & Jeroen F. J. Pruyn, 2021. "A Study into the Availability, Costs and GHG Reduction in Drop-In Biofuels for Shipping under Different Regimes between 2020 and 2050," Sustainability, MDPI, vol. 13(17), pages 1-20, September.
    7. Ramirez, Jerome A. & Brown, Richard & Rainey, Thomas J., 2018. "Techno-economic analysis of the thermal liquefaction of sugarcane bagasse in ethanol to produce liquid fuels," Applied Energy, Elsevier, vol. 224(C), pages 184-193.
    8. Zhao, Kaige & Li, Wanqing & Yu, Yingying & Chen, Guanyi & Yan, Beibei & Cheng, Zhanjun & Zhao, Hai & Fang, Yang, 2023. "Speciation and transformation of nitrogen in the hydrothermal liquefaction of wastewater-treated duckweed for the bio-oil production," Renewable Energy, Elsevier, vol. 204(C), pages 661-670.
    9. Magdeldin, Mohamed & Kohl, Thomas & Järvinen, Mika, 2017. "Techno-economic assessment of the by-products contribution from non-catalytic hydrothermal liquefaction of lignocellulose residues," Energy, Elsevier, vol. 137(C), pages 679-695.
    10. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Taghipour, Alireza & Ramirez, Jerome A. & Brown, Richard J. & Rainey, Thomas J., 2019. "A review of fractional distillation to improve hydrothermal liquefaction biocrude characteristics; future outlook and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    12. Wang, Haoqi & Zhang, Siduo & Bi, Xiaotao & Clift, Roland, 2020. "Greenhouse gas emission reduction potential and cost of bioenergy in British Columbia, Canada," Energy Policy, Elsevier, vol. 138(C).
    13. Kim, Seong Ju & Um, Byung Hwan, 2020. "Effect of thermochemically fractionation before hydrothermal liquefaction of herbaceous biomass on biocrude characteristics," Renewable Energy, Elsevier, vol. 160(C), pages 612-622.
    14. Nie, Yuhao & Bi, Xiaotao T., 2018. "Techno-economic assessment of transportation biofuels from hydrothermal liquefaction of forest residues in British Columbia," Energy, Elsevier, vol. 153(C), pages 464-475.
    15. Biswas, Bijoy & Arun Kumar, Aishwarya & Bisht, Yashasvi & Krishna, Bhavya B. & Kumar, Jitendra & Bhaskar, Thallada, 2021. "Role of temperatures and solvents on hydrothermal liquefaction of Azolla filiculoides," Energy, Elsevier, vol. 217(C).
    16. Prestigiacomo, Claudia & Proietto, Federica & Laudicina, Vito Armando & Siragusa, Angelo & Scialdone, Onofrio & Galia, Alessandro, 2021. "Catalytic hydrothermal liquefaction of municipal sludge assisted by formic acid for the production of next-generation fuels," Energy, Elsevier, vol. 232(C).
    17. Ahmad, Fiaz & Silva, Edson Luiz & Varesche, Maria Bernadete Amâncio, 2018. "Hydrothermal processing of biomass for anaerobic digestion – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 108-124.
    18. Perkins, Greg & Batalha, Nuno & Kumar, Adarsh & Bhaskar, Thallada & Konarova, Muxina, 2019. "Recent advances in liquefaction technologies for production of liquid hydrocarbon fuels from biomass and carbonaceous wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    19. Qian, Lili & Wang, Shuzhong & Savage, Phillip E., 2020. "Fast and isothermal hydrothermal liquefaction of sludge at different severities: Reaction products, pathways, and kinetics," Applied Energy, Elsevier, vol. 260(C).
    20. Li, Qingyin & Yuan, Xiangzhou & Hu, Xun & Meers, Erik & Ong, Hwai Chyuan & Chen, Wei-Hsin & Duan, Peigao & Zhang, Shicheng & Lee, Ki Bong & Ok, Yong Sik, 2022. "Co-liquefaction of mixed biomass feedstocks for bio-oil production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:232:y:2021:i:c:s0360544221012755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.