IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i17p9900-d628173.html
   My bibliography  Save this article

A Study into the Availability, Costs and GHG Reduction in Drop-In Biofuels for Shipping under Different Regimes between 2020 and 2050

Author

Listed:
  • Douwe F. A. van der Kroft

    (Department of Maritime and Transport Technology, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands)

  • Jeroen F. J. Pruyn

    (Department of Maritime and Transport Technology, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands)

Abstract

In this study, various scenarios were developed that correspond to estimations of future biomass availability and biofuel demand from the maritime industry. These marine biofuel demand scenarios were based on the Greenhouse Gas (GHG) reduction targets of the Renewable Energy Directive II (RED II) and the International Maritime Organization (IMO). A multi-objective Mixed Integer Linear Programming (MILP) model was developed which is used to optimize the Well-to-Tank (WtT) phases of each studied scenario. This resulted in an overview of the most feasible use of feedstocks, deployment of new conversion technologies and trade flows between regions. Additionally, the results provided insight into the costs and emission reduction potential of marine biofuels. By analyzing the results from this study, improved insight into the potential of drop-in biofuels for reaching the proposed emission reduction targets for the maritime sector was developed. A trade-off between costs and emissions was found to result in potential GHG reductions between 68–95% compared to Heavy Fuel Oil (HFO) for 800–2300 EUR/ton. More specifically, 80% GHG reduction compared to HFO can be achieved at fuel costs of between 900–1050 EUR/ton over the studied time period.

Suggested Citation

  • Douwe F. A. van der Kroft & Jeroen F. J. Pruyn, 2021. "A Study into the Availability, Costs and GHG Reduction in Drop-In Biofuels for Shipping under Different Regimes between 2020 and 2050," Sustainability, MDPI, vol. 13(17), pages 1-20, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9900-:d:628173
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/17/9900/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/17/9900/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Raimonds Aronietis & Christa Sys & Edwin van Hassel & Thierry Vanelslander, 2016. "Forecasting port-level demand for LNG as a ship fuel: the case of the port of Antwerp," Journal of Shipping and Trade, Springer, vol. 1(1), pages 1-22, December.
    2. Tzanetis, Konstantinos F. & Posada, John A. & Ramirez, Andrea, 2017. "Analysis of biomass hydrothermal liquefaction and biocrude-oil upgrading for renewable jet fuel production: The impact of reaction conditions on production costs and GHG emissions performance," Renewable Energy, Elsevier, vol. 113(C), pages 1388-1398.
    3. Atsonios, Konstantinos & Kougioumtzis, Michael-Alexander & D. Panopoulos, Kyriakos & Kakaras, Emmanuel, 2015. "Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison," Applied Energy, Elsevier, vol. 138(C), pages 346-366.
    4. Sarkar, Susanjib & Kumar, Amit & Sultana, Arifa, 2011. "Biofuels and biochemicals production from forest biomass in Western Canada," Energy, Elsevier, vol. 36(10), pages 6251-6262.
    5. Zhu, Yunhua & Biddy, Mary J. & Jones, Susanne B. & Elliott, Douglas C. & Schmidt, Andrew J., 2014. "Techno-economic analysis of liquid fuel production from woody biomass via hydrothermal liquefaction (HTL) and upgrading," Applied Energy, Elsevier, vol. 129(C), pages 384-394.
    6. Jay Gregg & Steven Smith, 2010. "Global and regional potential for bioenergy from agricultural and forestry residue biomass," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(3), pages 241-262, March.
    7. Magdeldin, Mohamed & Kohl, Thomas & Järvinen, Mika, 2017. "Techno-economic assessment of the by-products contribution from non-catalytic hydrothermal liquefaction of lignocellulose residues," Energy, Elsevier, vol. 137(C), pages 679-695.
    8. Ernest Czermański & Giuseppe T. Cirella & Aneta Oniszczuk-Jastrząbek & Barbara Pawłowska & Theo Notteboom, 2021. "An Energy Consumption Approach to Estimate Air Emission Reductions in Container Shipping," Energies, MDPI, vol. 14(2), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ong, Benjamin H.Y. & Walmsley, Timothy G. & Atkins, Martin J. & Varbanov, Petar S. & Walmsley, Michael R.W., 2019. "A heat- and mass-integrated design of hydrothermal liquefaction process co-located with a Kraft pulp mill," Energy, Elsevier, vol. 189(C).
    2. Nie, Yuhao & Bi, Xiaotao T., 2018. "Techno-economic assessment of transportation biofuels from hydrothermal liquefaction of forest residues in British Columbia," Energy, Elsevier, vol. 153(C), pages 464-475.
    3. Ramirez, Jerome A. & Brown, Richard & Rainey, Thomas J., 2018. "Techno-economic analysis of the thermal liquefaction of sugarcane bagasse in ethanol to produce liquid fuels," Applied Energy, Elsevier, vol. 224(C), pages 184-193.
    4. Alherbawi, Mohammad & Parthasarathy, Prakash & Al-Ansari, Tareq & Mackey, Hamish R. & McKay, Gordon, 2021. "Potential of drop-in biofuel production from camel manure by hydrothermal liquefaction and biocrude upgrading: A Qatar case study," Energy, Elsevier, vol. 232(C).
    5. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Ankit Mathanker & Snehlata Das & Deepak Pudasainee & Monir Khan & Amit Kumar & Rajender Gupta, 2021. "A Review of Hydrothermal Liquefaction of Biomass for Biofuels Production with a Special Focus on the Effect of Process Parameters, Co-Solvents, and Extraction Solvents," Energies, MDPI, vol. 14(16), pages 1-60, August.
    7. Ahmad, Salman & Ouenniche, Jamal & Kolosz, Ben W. & Greening, Philip & Andresen, John M. & Maroto-Valer, M. Mercedes & Xu, Bing, 2021. "A stakeholders’ participatory approach to multi-criteria assessment of sustainable aviation fuels production pathways," International Journal of Production Economics, Elsevier, vol. 238(C).
    8. Tonini, Davide & Vadenbo, Carl & Astrup, Thomas Fruergaard, 2017. "Priority of domestic biomass resources for energy: Importance of national environmental targets in a climate perspective," Energy, Elsevier, vol. 124(C), pages 295-309.
    9. Zhang, Chi & Hui, Xin & Lin, Yuzhen & Sung, Chih-Jen, 2016. "Recent development in studies of alternative jet fuel combustion: Progress, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 120-138.
    10. Nestor Goicoechea & Luis María Abadie, 2021. "Optimal Slow Steaming Speed for Container Ships under the EU Emission Trading System," Energies, MDPI, vol. 14(22), pages 1-25, November.
    11. Baudry, Gino & Delrue, Florian & Legrand, Jack & Pruvost, Jérémy & Vallée, Thomas, 2017. "The challenge of measuring biofuel sustainability: A stakeholder-driven approach applied to the French case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 933-947.
    12. Feng, Ping & Hao, Lifang & Huo, Chaofei & Wang, Ze & Lin, Weigang & Song, Wenli, 2014. "Rheological behavior of coal bio-oil slurries," Energy, Elsevier, vol. 66(C), pages 744-749.
    13. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Magdeldin, Mohamed & Kohl, Thomas & Järvinen, Mika, 2017. "Techno-economic assessment of the by-products contribution from non-catalytic hydrothermal liquefaction of lignocellulose residues," Energy, Elsevier, vol. 137(C), pages 679-695.
    15. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    16. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    17. Raquel de Souza Deuber & Jéssica Marcon Bressanin & Daniel Santos Fernandes & Henrique Real Guimarães & Mateus Ferreira Chagas & Antonio Bonomi & Leonardo Vasconcelos Fregolente & Marcos Djun Barbosa , 2023. "Production of Sustainable Aviation Fuels from Lignocellulosic Residues in Brazil through Hydrothermal Liquefaction: Techno-Economic and Environmental Assessments," Energies, MDPI, vol. 16(6), pages 1-21, March.
    18. Jessica Kersey & Natalie D. Popovich & Amol A. Phadke, 2022. "Rapid battery cost declines accelerate the prospects of all-electric interregional container shipping," Nature Energy, Nature, vol. 7(7), pages 664-674, July.
    19. de Jong, Sierk & Hoefnagels, Ric & Wetterlund, Elisabeth & Pettersson, Karin & Faaij, André & Junginger, Martin, 2017. "Cost optimization of biofuel production – The impact of scale, integration, transport and supply chain configurations," Applied Energy, Elsevier, vol. 195(C), pages 1055-1070.
    20. Venturini, Giada & Pizarro-Alonso, Amalia & Münster, Marie, 2019. "How to maximise the value of residual biomass resources: The case of straw in Denmark," Applied Energy, Elsevier, vol. 250(C), pages 369-388.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9900-:d:628173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.