IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v193y2020ics0360544219323400.html
   My bibliography  Save this article

Hydrothermal liquefaction of fresh lemon-peel and Spirulina platensis blending -operation parameter and biocrude chemistry investigation

Author

Listed:
  • Zhang, Bo
  • Chen, Jixiang
  • Kandasamy, Sabariswaran
  • He, Zhixia

Abstract

The present study investigated the biocrude production from the blending of Spirulina platensis and lemon-peel via hydrothermal liquefaction process. The interaction of parameters such as temperature (280–350 °C), time (10–60 min), and different blending ratio on liquefaction was visualized using the response surface methodology. During the experiment, the highest biocrude yield of 26 wt% was achieved at 336 °C and 35 min with the Spirulina platensis/lemon-peel mass ratio of 4:1. Results showed that the biocrude yield was increased with microalgae content in the blending, whereas the effect of temperature and time was dependent on the other parameters. The blending led to a reduction in the yield, energy recovery, and also the nitrogen content of the biocrude compared with the model estimation. GC-MS, FT-IR, NMR, and TGA were applied to characterize the biocrude. Results demonstrated an increase of nitrogen heterocycles and a decline of unsaturated compounds due to liquefaction of the blending. The blending resulted in a shift of compounds in biocrude from low to middle distillation region. The ultimate analysis indicated a strong deoxygenation degree of biomass during hydrothermal liquefaction process, while the blending displayed an inconspicuous improvement in the deoxygenation.

Suggested Citation

  • Zhang, Bo & Chen, Jixiang & Kandasamy, Sabariswaran & He, Zhixia, 2020. "Hydrothermal liquefaction of fresh lemon-peel and Spirulina platensis blending -operation parameter and biocrude chemistry investigation," Energy, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:energy:v:193:y:2020:i:c:s0360544219323400
    DOI: 10.1016/j.energy.2019.116645
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219323400
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116645?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lopez-Castrillon, Carolina & Leon, Juan Alvaro & Palacios-Bereche, Milagros Cecilia & Palacios-Bereche, Reynaldo & Nebra, Silvia Azucena, 2018. "Improvements in fermentation and cogeneration system in the ethanol production process: Hybrid membrane fermentation and heat integration of the overall process through Pinch Analysis," Energy, Elsevier, vol. 156(C), pages 468-480.
    2. Chen, Wan-Ting & Zhang, Yuanhui & Zhang, Jixiang & Schideman, Lance & Yu, Guo & Zhang, Peng & Minarick, Mitchell, 2014. "Co-liquefaction of swine manure and mixed-culture algal biomass from a wastewater treatment system to produce bio-crude oil," Applied Energy, Elsevier, vol. 128(C), pages 209-216.
    3. Chaudry, Sofia & Bahri, Parisa A. & Moheimani, Navid R., 2015. "Pathways of processing of wet microalgae for liquid fuel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1240-1250.
    4. Kumar, Mayank & Olajire Oyedun, Adetoyese & Kumar, Amit, 2018. "A review on the current status of various hydrothermal technologies on biomass feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1742-1770.
    5. Sues, Anna & Juraščík, Martin & Ptasinski, Krzysztof, 2010. "Exergetic evaluation of 5 biowastes-to-biofuels routes via gasification," Energy, Elsevier, vol. 35(2), pages 996-1007.
    6. Cheng, Feng & Cui, Zheng & Chen, Lin & Jarvis, Jacqueline & Paz, Neil & Schaub, Tanner & Nirmalakhandan, Nagamany & Brewer, Catherine E., 2017. "Hydrothermal liquefaction of high- and low-lipid algae: Bio-crude oil chemistry," Applied Energy, Elsevier, vol. 206(C), pages 278-292.
    7. Feng, Huan & Zhang, Bo & He, Zhixia & Wang, Shuang & Salih, Osman & Wang, Qian, 2018. "Study on co-liquefaction of Spirulina and Spartina alterniflora in ethanol-water co-solvent for bio-oil," Energy, Elsevier, vol. 155(C), pages 1093-1101.
    8. Jaafari, Laila & Ibrahim, Hussameldin & Jaffary, Bander & Idem, Raphael, 2019. "Catalytic production of furfural by pressurized liquid water liquefaction of flax straw," Renewable Energy, Elsevier, vol. 130(C), pages 1176-1184.
    9. Nazari, Laleh & Yuan, Zhongshun & Ray, Madhumita B. & Xu, Chunbao (Charles), 2017. "Co-conversion of waste activated sludge and sawdust through hydrothermal liquefaction: Optimization of reaction parameters using response surface methodology," Applied Energy, Elsevier, vol. 203(C), pages 1-10.
    10. Liu, Qing & Liu, Peng & Xu, Zhi-Xiang & He, Zhi-Xia & Wang, Qian, 2018. "Bio-fuel oil characteristic of rice bran wax pyrolysis," Renewable Energy, Elsevier, vol. 119(C), pages 193-202.
    11. Dimitriadis, Athanasios & Bezergianni, Stella, 2017. "Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 113-125.
    12. Kumar, Kanhaiya & Ghosh, Supratim & Angelidaki, Irini & Holdt, Susan L. & Karakashev, Dimitar B. & Morales, Merlin Alvarado & Das, Debabrata, 2016. "Recent developments on biofuels production from microalgae and macroalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 235-249.
    13. Yin, Sudong & Tan, Zhongchao, 2012. "Hydrothermal liquefaction of cellulose to bio-oil under acidic, neutral and alkaline conditions," Applied Energy, Elsevier, vol. 92(C), pages 234-239.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Al-Jabri, Hareb & Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammad & Thaher, Mehmoud Ibrahim & Hoekman, Kent & Hawari, Alaa H., 2022. "A comparison of bio-crude oil production from five marine microalgae – Using life cycle analysis," Energy, Elsevier, vol. 251(C).
    2. Alherbawi, Mohammad & Parthasarathy, Prakash & Al-Ansari, Tareq & Mackey, Hamish R. & McKay, Gordon, 2021. "Potential of drop-in biofuel production from camel manure by hydrothermal liquefaction and biocrude upgrading: A Qatar case study," Energy, Elsevier, vol. 232(C).
    3. Ratha, Sachitra Kumar & Renuka, Nirmal & Abunama, Taher & Rawat, Ismail & Bux, Faizal, 2022. "Hydrothermal liquefaction of algal feedstocks: The effect of biomass characteristics and extraction solvents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    4. Yuliya Kulikova & Marina Krasnovskikh & Natalia Sliusar & Nikolay Orlov & Olga Babich, 2023. "Analysis and Comparison of Bio-Oils Obtained by Hydrothermal Liquefaction of Organic Waste," Sustainability, MDPI, vol. 15(2), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Jie & (Sophia) He, Quan & Yang, Linxi, 2019. "A review on hydrothermal co-liquefaction of biomass," Applied Energy, Elsevier, vol. 250(C), pages 926-945.
    2. Kumar, Mayank & Olajire Oyedun, Adetoyese & Kumar, Amit, 2018. "A review on the current status of various hydrothermal technologies on biomass feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1742-1770.
    3. Ayaz Ali Shah & Saqib Sohail Toor & Asbjørn Haaning Nielsen & Thomas Helmer Pedersen & Lasse Aistrup Rosendahl, 2021. "Bio-Crude Production through Recycling of Pretreated Aqueous Phase via Activated Carbon," Energies, MDPI, vol. 14(12), pages 1-20, June.
    4. Kamaldeep Sharma & Ayaz A. Shah & Saqib S. Toor & Tahir H. Seehar & Thomas H. Pedersen & Lasse A. Rosendahl, 2021. "Co-Hydrothermal Liquefaction of Lignocellulosic Biomass in Supercritical Water," Energies, MDPI, vol. 14(6), pages 1-13, March.
    5. Li, Qingyin & Yuan, Xiangzhou & Hu, Xun & Meers, Erik & Ong, Hwai Chyuan & Chen, Wei-Hsin & Duan, Peigao & Zhang, Shicheng & Lee, Ki Bong & Ok, Yong Sik, 2022. "Co-liquefaction of mixed biomass feedstocks for bio-oil production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    6. Yang, Jie & He, Quan (Sophia) & Niu, Haibo & Corscadden, Kenneth & Astatkie, Tess, 2018. "Hydrothermal liquefaction of biomass model components for product yield prediction and reaction pathways exploration," Applied Energy, Elsevier, vol. 228(C), pages 1618-1628.
    7. Duan, Yibing & He, Zhixia & Zhang, Bo & Wang, Bin & Zhang, Feiyang, 2022. "Synergistic effect of hydrothermal co-liquefaction of Camellia oleifera Abel and Spirulina platensis: Parameters optimization and product characteristics," Renewable Energy, Elsevier, vol. 186(C), pages 26-34.
    8. Junying Chen & Lijun Wang & Bo Zhang & Rui Li & Abolghasem Shahbazi, 2018. "Hydrothermal Liquefaction Enhanced by Various Chemicals as a Means of Sustainable Dairy Manure Treatment," Sustainability, MDPI, vol. 10(1), pages 1-14, January.
    9. Xu, Donghai & Lin, Guike & Guo, Shuwei & Wang, Shuzhong & Guo, Yang & Jing, Zefeng, 2018. "Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 103-118.
    10. Hu, Yulin & Gong, Mengyue & Feng, Shanghuan & Xu, Chunbao (Charles) & Bassi, Amarjeet, 2019. "A review of recent developments of pre-treatment technologies and hydrothermal liquefaction of microalgae for bio-crude oil production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 476-492.
    11. Gollakota, A.R.K. & Kishore, Nanda & Gu, Sai, 2018. "A review on hydrothermal liquefaction of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1378-1392.
    12. Zhao, Bojun & Li, Haoyang & Wang, Haoyu & Hu, Yulin & Gao, Jihui & Zhao, Guangbo & Ray, Madhumita B. & Xu, Chunbao Charles, 2021. "Synergistic effects of metallic Fe and other homogeneous/heterogeneous catalysts in hydrothermal liquefaction of woody biomass," Renewable Energy, Elsevier, vol. 176(C), pages 543-554.
    13. Ankit Mathanker & Snehlata Das & Deepak Pudasainee & Monir Khan & Amit Kumar & Rajender Gupta, 2021. "A Review of Hydrothermal Liquefaction of Biomass for Biofuels Production with a Special Focus on the Effect of Process Parameters, Co-Solvents, and Extraction Solvents," Energies, MDPI, vol. 14(16), pages 1-60, August.
    14. Aljabri, Hareb & Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammad & Thaher, Mahmoud & Hawari, Alaa H. & Al-Shamary, Noora Mahmoud, 2022. "A study to investigate the energy recovery potential from different macromolecules of a low-lipid marine Tetraselmis sp. biomass through HTL process," Renewable Energy, Elsevier, vol. 189(C), pages 78-89.
    15. Chen, Haitao & He, Zhixia & Zhang, Bo & Feng, Huan & Kandasamy, Sabariswaran & Wang, Bin, 2019. "Effects of the aqueous phase recycling on bio-oil yield in hydrothermal liquefaction of Spirulina Platensis, α-cellulose, and lignin," Energy, Elsevier, vol. 179(C), pages 1103-1113.
    16. Prajitno, Hermawan & Park, Jongkeun & Ryu, Changkook & Park, Ho Young & Lim, Hyun Soo & Kim, Jaehoon, 2018. "Effects of solvent participation and controlled product separation on biomass liquefaction: A case study of sewage sludge," Applied Energy, Elsevier, vol. 218(C), pages 402-416.
    17. Guanyu Zhang & Kejie Wang & Quan Liu & Lujia Han & Xuesong Zhang, 2022. "A Comprehensive Hydrothermal Co-Liquefaction of Diverse Biowastes for Energy-Dense Biocrude Production: Synergistic and Antagonistic Effects," IJERPH, MDPI, vol. 19(17), pages 1-17, August.
    18. Wang, Haoyu & Han, Xue & Zeng, Yimin & Xu, Chunbao Charles, 2023. "Development of a global kinetic model based on chemical compositions of lignocellulosic biomass for predicting product yields from hydrothermal liquefaction," Renewable Energy, Elsevier, vol. 215(C).
    19. Ratha, Sachitra Kumar & Renuka, Nirmal & Abunama, Taher & Rawat, Ismail & Bux, Faizal, 2022. "Hydrothermal liquefaction of algal feedstocks: The effect of biomass characteristics and extraction solvents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    20. Siyuan Yin & Nianze Zhang & Chunyan Tian & Weiming Yi & Qiaoxia Yuan & Peng Fu & Yuchun Zhang & Zhiyu Li, 2021. "Effect of Accumulative Recycling of Aqueous Phase on the Properties of Hydrothermal Degradation of Dry Biomass and Bio-Crude Oil Formation," Energies, MDPI, vol. 14(2), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:193:y:2020:i:c:s0360544219323400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.