IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v156y2018icp468-480.html
   My bibliography  Save this article

Improvements in fermentation and cogeneration system in the ethanol production process: Hybrid membrane fermentation and heat integration of the overall process through Pinch Analysis

Author

Listed:
  • Lopez-Castrillon, Carolina
  • Leon, Juan Alvaro
  • Palacios-Bereche, Milagros Cecilia
  • Palacios-Bereche, Reynaldo
  • Nebra, Silvia Azucena

Abstract

The incorporation of an alternative technology for the fermentation process, and an improved cogeneration system in the first-generation ethanol production process were evaluated; and a heat integration analysis was performed as well. The hybrid membrane fermentation, the alternative technology, was considered as a non-conventional operation, and its impact on the overall energy consumption of the integrated process was estimated. The improved cogeneration system contemplated a supercritical cycle, and the increase in surplus electricity was also evaluated assuming a mixture of bagasse and sugarcane straw as fuel. The heat integration of the process streams was performed applying the Pinch Analysis in order to determine the targets for minimum external heating and cooling. Furthermore, the integration of the multiple-effect evaporator of sugarcane juice, to the process, was optimised based on the heat integration analysis results. Moreover, the results showed a possibility of generating a surplus electricity of 138 MW (275 kWh/t of cane) with the new technologies applied.

Suggested Citation

  • Lopez-Castrillon, Carolina & Leon, Juan Alvaro & Palacios-Bereche, Milagros Cecilia & Palacios-Bereche, Reynaldo & Nebra, Silvia Azucena, 2018. "Improvements in fermentation and cogeneration system in the ethanol production process: Hybrid membrane fermentation and heat integration of the overall process through Pinch Analysis," Energy, Elsevier, vol. 156(C), pages 468-480.
  • Handle: RePEc:eee:energy:v:156:y:2018:i:c:p:468-480
    DOI: 10.1016/j.energy.2018.05.092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218309137
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.05.092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Botshekan, Maryam & Moheb, Ahmad & Vatankhah, Fatemeh & Karimi, Keikhosro & Shafiei, Marzieh, 2022. "Energy saving alternatives for renewable ethanol production with the focus on separation/purification units: A techno-economic analysis," Energy, Elsevier, vol. 239(PE).
    2. Kondaveeti, Sanath & Patel, Sanjay K.S. & Pagolu, Raviteja & Li, Jinglin & Kalia, Vipin C. & Choi, Myung-Seok & Lee, Jung-Kul, 2019. "Conversion of simulated biogas to electricity: Sequential operation of methanotrophic reactor effluents in microbial fuel cell," Energy, Elsevier, vol. 189(C).
    3. Palacios-Bereche, M.C. & Palacios-Bereche, R. & Ensinas, A.V. & Gallego, A. Garrido & Modesto, Marcelo & Nebra, S.A., 2022. "Brazilian sugar cane industry – A survey on future improvements in the process energy management," Energy, Elsevier, vol. 259(C).
    4. Zhang, Bo & Chen, Jixiang & Kandasamy, Sabariswaran & He, Zhixia, 2020. "Hydrothermal liquefaction of fresh lemon-peel and Spirulina platensis blending -operation parameter and biocrude chemistry investigation," Energy, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:156:y:2018:i:c:p:468-480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.