IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v214y2021ics0360544220318983.html
   My bibliography  Save this article

Forecast of electricity consumption in the Cameroonian residential sector by Grey and vector autoregressive models

Author

Listed:
  • Guefano, Serge
  • Tamba, Jean Gaston
  • Azong, Tchitile Emmanuel Wilfried
  • Monkam, Louis

Abstract

Cameroon is highly growing in energy as a whole, and in electricity in particular. This growth is expected to increase within the next years, thanks to the current emergence as well as the country’s major projects. Therefore, mastering electricity demand in the residential sector is one of State’s priorities. In fact, this falls under the development plan of the electricity sector by 2025. Therefore, this paper highlights the forecast of the electricity consumption regarding the residential sector in Cameroon. The new GM(1,1)-VAR(1) hybrid model which is based on the VAR and Grey models, is used for this purpose. Results from the new model show that the previsional GM(1,1)-VAR(1) model is strong and reliable, just like some recent and modern hybrid models. Electricity needs of the residential sector by 2025 are estimated at 2641.632 GWh, with a 1.628% MAPE, and a 15.42 RMSE. Consequently, the new hybrid model should be a reliable previsional tool that makes it possible to monitor the evolution of electricity demand of the residential sector in cameroon.

Suggested Citation

  • Guefano, Serge & Tamba, Jean Gaston & Azong, Tchitile Emmanuel Wilfried & Monkam, Louis, 2021. "Forecast of electricity consumption in the Cameroonian residential sector by Grey and vector autoregressive models," Energy, Elsevier, vol. 214(C).
  • Handle: RePEc:eee:energy:v:214:y:2021:i:c:s0360544220318983
    DOI: 10.1016/j.energy.2020.118791
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220318983
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118791?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wirba, Asan Vernyuy & Abubakar Mas'ud, Abdullahi & Muhammad-Sukki, Firdaus & Ahmad, Salman & Mat Tahar, Razman & Abdul Rahim, Ruzairi & Munir, Abu Bakar & Karim, Md Ershadul, 2015. "Renewable energy potentials in Cameroon: Prospects and challenges," Renewable Energy, Elsevier, vol. 76(C), pages 560-565.
    2. Pourazarm, Elham & Cooray, Arusha, 2013. "Estimating and forecasting residential electricity demand in Iran," Economic Modelling, Elsevier, vol. 35(C), pages 546-558.
    3. Nepal, Rabindra & Paija, Nirash, 2019. "Energy security, electricity, population and economic growth: The case of a developing South Asian resource-rich economy," Energy Policy, Elsevier, vol. 132(C), pages 771-781.
    4. Mengelkamp, Esther & Schönland, Thomas & Huber, Julian & Weinhardt, Christof, 2019. "The value of local electricity - A choice experiment among German residential customers," Energy Policy, Elsevier, vol. 130(C), pages 294-303.
    5. Wu, Wanlu & Cheng, Yuanyuan & Lin, Xiqiao & Yao, Xin, 2019. "How does the implementation of the Policy of Electricity Substitution influence green economic growth in China?," Energy Policy, Elsevier, vol. 131(C), pages 251-261.
    6. Frondel, Manuel & Sommer, Stephan & Vance, Colin, 2019. "Heterogeneity in German Residential Electricity Consumption: A quantile regression approach," Energy Policy, Elsevier, vol. 131(C), pages 370-379.
    7. Véliz, Karina D. & Kaufmann, Robert K. & Cleveland, Cutler J. & Stoner, Anne M.K., 2017. "The effect of climate change on electricity expenditures in Massachusetts," Energy Policy, Elsevier, vol. 106(C), pages 1-11.
    8. Steinbuks, Jevgenijs, 2019. "Assessing the accuracy of electricity production forecasts in developing countries," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1175-1185.
    9. Shepero, Mahmoud & van der Meer, Dennis & Munkhammar, Joakim & Widén, Joakim, 2018. "Residential probabilistic load forecasting: A method using Gaussian process designed for electric load data," Applied Energy, Elsevier, vol. 218(C), pages 159-172.
    10. Ding, Song & Hipel, Keith W. & Dang, Yao-guo, 2018. "Forecasting China's electricity consumption using a new grey prediction model," Energy, Elsevier, vol. 149(C), pages 314-328.
    11. Ouedraogo, Nadia S., 2017. "Africa energy future: Alternative scenarios and their implications for sustainable development strategies," Energy Policy, Elsevier, vol. 106(C), pages 457-471.
    12. Adeoye, Omotola & Spataru, Catalina, 2019. "Modelling and forecasting hourly electricity demand in West African countries," Applied Energy, Elsevier, vol. 242(C), pages 311-333.
    13. Cialani, Catia & Mortazavi, Reza, 2018. "Household and industrial electricity demand in Europe," Energy Policy, Elsevier, vol. 122(C), pages 592-600.
    14. Jones, Rory V. & Fuertes, Alba & Lomas, Kevin J., 2015. "The socio-economic, dwelling and appliance related factors affecting electricity consumption in domestic buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 901-917.
    15. Muh, Erasmus & Amara, Sofiane & Tabet, Fouzi, 2018. "Sustainable energy policies in Cameroon: A holistic overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3420-3429.
    16. Lusis, Peter & Khalilpour, Kaveh Rajab & Andrew, Lachlan & Liebman, Ariel, 2017. "Short-term residential load forecasting: Impact of calendar effects and forecast granularity," Applied Energy, Elsevier, vol. 205(C), pages 654-669.
    17. Amber, K.P. & Ahmad, R. & Aslam, M.W. & Kousar, A. & Usman, M. & Khan, M.S., 2018. "Intelligent techniques for forecasting electricity consumption of buildings," Energy, Elsevier, vol. 157(C), pages 886-893.
    18. Xu, Ning & Dang, Yaoguo & Gong, Yande, 2017. "Novel grey prediction model with nonlinear optimized time response method for forecasting of electricity consumption in China," Energy, Elsevier, vol. 118(C), pages 473-480.
    19. Cao, Jing & Ho, Mun Sing & Li, Yating & Newell, Richard G. & Pizer, William A., 2019. "Chinese residential electricity consumption: Estimation and forecast using micro-data," Resource and Energy Economics, Elsevier, vol. 56(C), pages 6-27.
    20. Xu, Weijun & Gu, Ren & Liu, Youzhu & Dai, Yongwu, 2015. "Forecasting energy consumption using a new GM–ARMA model based on HP filter: The case of Guangdong Province of China," Economic Modelling, Elsevier, vol. 45(C), pages 127-135.
    21. Tamo Tatietse Thomas & Kemajou Alexis & Diboma Benjamin Salomon, 2010. "Electricity Self-Generation Costs for Industrial Companies in Cameroon," Energies, MDPI, vol. 3(7), pages 1-16, July.
    22. Cabral, Joilson de Assis & Legey, Luiz Fernando Loureiro & Freitas Cabral, Maria Viviana de, 2017. "Electricity consumption forecasting in Brazil: A spatial econometrics approach," Energy, Elsevier, vol. 126(C), pages 124-131.
    23. Modeste, Kameni Nematchoua & Mempouo, Blaise & René, Tchinda & Costa, Ángel M. & Orosa, José A. & Raminosoa, Chrysostôme R.R. & Mamiharijaona, Ramaroson, 2015. "Resource potential and energy efficiency in the buildings of Cameroon: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 835-846.
    24. Zhang, Tong & Shi, Xunpeng & Zhang, Dayong & Xiao, Junji, 2019. "Socio-economic development and electricity access in developing economies: A long-run model averaging approach," Energy Policy, Elsevier, vol. 132(C), pages 223-231.
    25. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    26. da Silva, Patrícia Pereira & Cerqueira, Pedro André & Ogbe, Wojolomi, 2018. "Determinants of renewable energy growth in Sub-Saharan Africa: Evidence from panel ARDL," Energy, Elsevier, vol. 156(C), pages 45-54.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nsangou, Jean Calvin & Kenfack, Joseph & Nzotcha, Urbain & Ngohe Ekam, Paul Salomon & Voufo, Joseph & Tamo, Thomas T., 2022. "Explaining household electricity consumption using quantile regression, decision tree and artificial neural network," Energy, Elsevier, vol. 250(C).
    2. Melissa Valencia-Duque & Juan Zapata-Mina & Juan E. Tibaquir & Juan Carlos Castillo, 2023. "Sustainability Analysis of Electricity Generation in Colombia through the Projection of Energy Efficiency Indicators," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 255-263, July.
    3. Wu, Wen-Ze & Zeng, Liang & Liu, Chong & Xie, Wanli & Goh, Mark, 2022. "A time power-based grey model with conformable fractional derivative and its applications," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    4. Zhao, Zhenyu & Zhang, Yao & Yang, Yujia & Yuan, Shuguang, 2022. "Load forecasting via Grey Model-Least Squares Support Vector Machine model and spatial-temporal distribution of electric consumption intensity," Energy, Elsevier, vol. 255(C).
    5. Zhou, Wenhao & Li, Hailin & Zhang, Zhiwei, 2022. "A novel seasonal fractional grey model for predicting electricity demand: A case study of Zhejiang in China," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 128-147.
    6. Gao, Feng & Chi, Hong & Shao, Xueyan, 2021. "Forecasting residential electricity consumption using a hybrid machine learning model with online search data," Applied Energy, Elsevier, vol. 300(C).
    7. Yaqing Sheng & Jinpeng Liu & Delin Wei & Xiaohua Song, 2021. "Heterogeneous Study of Multiple Disturbance Factors Outside Residential Electricity Consumption: A Case Study of Beijing," Sustainability, MDPI, vol. 13(6), pages 1-22, March.
    8. Hu, Zehuan & Gao, Yuan & Sun, Luning & Mae, Masayuki & Imaizumi, Taiji, 2024. "Self-learning dynamic graph neural network with self-attention based on historical data and future data for multi-task multivariate residential air conditioning forecasting," Applied Energy, Elsevier, vol. 364(C).
    9. Safder, Usman & Hai, Tra Nguyen & Loy-Benitez, Jorge & Yoo, ChangKyoo, 2022. "Nationwide policymaking strategies to prevent future electricity crises in developing countries using data-driven forecasting and fuzzy-SWOT analyses," Energy, Elsevier, vol. 259(C).
    10. Du, Pei & Guo, Ju'e & Sun, Shaolong & Wang, Shouyang & Wu, Jing, 2022. "A novel two-stage seasonal grey model for residential electricity consumption forecasting," Energy, Elsevier, vol. 258(C).
    11. Huakun Huang & Dingrong Dai & Longtao Guo & Sihui Xue & Huijun Wu, 2023. "AI and Big Data-Empowered Low-Carbon Buildings: Challenges and Prospects," Sustainability, MDPI, vol. 15(16), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Meng & Guo, Huan & Sun, Ming & Liu, Sifeng & Forrest, Jeffrey, 2022. "A novel flexible grey multivariable model and its application in forecasting energy consumption in China," Energy, Elsevier, vol. 239(PE).
    2. Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
    3. Muh, Erasmus & Amara, Sofiane & Tabet, Fouzi, 2018. "Sustainable energy policies in Cameroon: A holistic overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3420-3429.
    4. Muh, Erasmus & Tabet, Fouzi, 2019. "Comparative analysis of hybrid renewable energy systems for off-grid applications in Southern Cameroons," Renewable Energy, Elsevier, vol. 135(C), pages 41-54.
    5. Akdi, Yılmaz & Gölveren, Elif & Okkaoğlu, Yasin, 2020. "Daily electrical energy consumption: Periodicity, harmonic regression method and forecasting," Energy, Elsevier, vol. 191(C).
    6. Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
    7. Zheng, Li & Abbasi, Kashif Raza & Salem, Sultan & Irfan, Muhammad & Alvarado, Rafael & Lv, Kangjuan, 2022. "How technological innovation and institutional quality affect sectoral energy consumption in Pakistan? Fresh policy insights from novel econometric approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    8. Ding, Song & Tao, Zui & Zhang, Huahan & Li, Yao, 2022. "Forecasting nuclear energy consumption in China and America: An optimized structure-adaptative grey model," Energy, Elsevier, vol. 239(PA).
    9. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    10. Ding, Song, 2018. "A novel self-adapting intelligent grey model for forecasting China's natural-gas demand," Energy, Elsevier, vol. 162(C), pages 393-407.
    11. Xingcai Zhou & Jiangyan Wang, 2021. "Panel semiparametric quantile regression neural network for electricity consumption forecasting," Papers 2103.00711, arXiv.org.
    12. Hu, Yusha & Li, Jigeng & Hong, Mengna & Ren, Jingzheng & Lin, Ruojue & Liu, Yue & Liu, Mengru & Man, Yi, 2019. "Short term electric load forecasting model and its verification for process industrial enterprises based on hybrid GA-PSO-BPNN algorithm—A case study of papermaking process," Energy, Elsevier, vol. 170(C), pages 1215-1227.
    13. Wang, Lin & Hu, Huanling & Ai, Xue-Yi & Liu, Hua, 2018. "Effective electricity energy consumption forecasting using echo state network improved by differential evolution algorithm," Energy, Elsevier, vol. 153(C), pages 801-815.
    14. Imani, Maryam, 2021. "Electrical load-temperature CNN for residential load forecasting," Energy, Elsevier, vol. 227(C).
    15. Luo, Xilin & Duan, Huiming & He, Leiyuhang, 2020. "A Novel Riccati Equation Grey Model And Its Application In Forecasting Clean Energy," Energy, Elsevier, vol. 205(C).
    16. Jia, Jun-Jun & Guo, Jin & Wei, Chu, 2021. "Elasticities of residential electricity demand in China under increasing-block pricing constraint: New estimation using household survey data," Energy Policy, Elsevier, vol. 156(C).
    17. Qian, Wuyong & Wang, Jue, 2020. "An improved seasonal GM(1,1) model based on the HP filter for forecasting wind power generation in China," Energy, Elsevier, vol. 209(C).
    18. Li, Chuan-Zhong & Wei, Chu & Yu, Yang, 2020. "Income threshold, household appliance ownership and residential energy consumption in urban China," China Economic Review, Elsevier, vol. 60(C).
    19. Tang, Lei & Wang, Xifan & Wang, Xiuli & Shao, Chengcheng & Liu, Shiyu & Tian, Shijun, 2019. "Long-term electricity consumption forecasting based on expert prediction and fuzzy Bayesian theory," Energy, Elsevier, vol. 167(C), pages 1144-1154.
    20. Liu, Xiaorui & Sun, Tao & Feng, Qiang & Zhang, Di, 2020. "Dynamic nonlinear influence of urbanization on China’s electricity consumption: Evidence from dynamic economic growth threshold effect," Energy, Elsevier, vol. 196(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:214:y:2021:i:c:s0360544220318983. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.